diff --git a/README.md b/README.md index 2e20b0c..57692ab 100644 --- a/README.md +++ b/README.md @@ -36,7 +36,6 @@ julia> p1 = plot(t, f, legend=false, title="Doppler", xticks=false) Plot{Plots.PyPlotBackend() n=1} julia> c = wavelet(Morlet(π), β=2) - CWT{Morlet mean 3.141592653589793, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} julia> res = ContinuousWavelets.cwt(f, c) @@ -91,7 +90,6 @@ It can also handle collections of examples at the same time, should you need to julia> exs = cat(testfunction(n, "Doppler"), testfunction(n, "Blocks"), testfunction(n, "Bumps"), testfunction(n, "HeaviSine"), dims=2); julia> c = wavelet(cDb2, β=2, extraOctaves=-0) - CWT{Continuous db2, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} julia> res = circshift(ContinuousWavelets.cwt(exs, c), (0, 1, 0)) diff --git a/docs/src/README.md b/docs/src/README.md index 54bb6e0..e0da3fe 100644 --- a/docs/src/README.md +++ b/docs/src/README.md @@ -45,9 +45,7 @@ julia> t = range(0, n / 1000, length=n); # 1kHz sampling rate julia> f = testfunction(n, "Doppler"); -julia> c = wavelet(Morlet(π), β=2) - -CWT{Morlet mean 3.141592653589793, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} +julia> c = wavelet(Morlet(π), β=2); julia> res = ContinuousWavelets.cwt(f, c) ┌ Warning: the lowest frequency wavelet has more than 1% its max at zero, so it may not be analytic. Think carefully @@ -111,9 +109,7 @@ julia> using Wavelets julia> exs = cat(testfunction(n, "Doppler"), testfunction(n, "Blocks"), testfunction(n, "Bumps"), testfunction(n, "HeaviSine"), dims=2); -julia> c = wavelet(cDb2, β=2, extraOctaves=-0) - -CWT{Continuous db2, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} +julia> c = wavelet(cDb2, β=2, extraOctaves=-0); julia> res = circshift(ContinuousWavelets.cwt(exs, c), (0, 1, 0)) ┌ Warning: the highest frequency wavelet has more than 1% its max at the end, so it may not be analytic. Think carefully