You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello. I am new to MCMCTempering.jl package and recently started using. As per the tutorial, I tried to use the function tempered(sampler, temperature_steps) with the default NUTS() sampler from Turing.jl. But it looks like I there is not function named tempered at all. There is one Tempered with the capital T, but when I use it, the sampler throws the following error:
Hello. I am new to
MCMCTempering.jl
package and recently started using. As per the tutorial, I tried to use the functiontempered(sampler, temperature_steps)
with the defaultNUTS()
sampler fromTuring.jl
. But it looks like I there is not function namedtempered
at all. There is oneTempered
with the capital T, but when I use it, the sampler throws the following error:ERROR: MethodError: no method matching make_tempered_model(::DynamicPPL.Model{typeof(truth_data_fitting!), (:data, :ODEtspan, :num_variants, :tot_pop, :interp_IPTCC, :interp_mobil), (), (), Tuple{DataFrame, Tuple{Float64, Float64}, Int64, Int64, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}}, Tuple{}, DynamicPPL.DefaultContext}, ::Float64)
Stacktrace:
[1] (::MCMCTempering.var"#5#6"{Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, Random._GLOBAL_RNG, DynamicPPL.Model{typeof(truth_data_fitting!), (:data, :ODEtspan, :num_variants, :tot_pop, :interp_IPTCC, :interp_mobil), (), (), Tuple{DataFrame, Tuple{Float64, Float64}, Int64, Int64, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}},
Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}}, Tuple{}, DynamicPPL.DefaultContext}, TemperedSampler{NUTS{Turing.Essential.ForwardDiffAD{40}, (), DiagEuclideanMetric}}})(Δi::Int64)
@ MCMCTempering .\none:0
[2] iterate
@ .\generator.jl:47 [inlined]
[3] collect(itr::Base.Generator{Vector{Int64}, MCMCTempering.var"#5#6"{Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, Random._GLOBAL_RNG, DynamicPPL.Model{typeof(truth_data_fitting!), (:data, :ODEtspan, :num_variants, :tot_pop, :interp_IPTCC, :interp_mobil), (), (), Tuple{DataFrame, Tuple{Float64, Float64}, Int64, Int64, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}}, Tuple{}, DynamicPPL.DefaultContext}, TemperedSampler{NUTS{Turing.Essential.ForwardDiffAD{40}, (), DiagEuclideanMetric}}}})
@ Base .\array.jl:678
[4] step(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(truth_data_fitting!), (:data, :ODEtspan, :num_variants, :tot_pop, :interp_IPTCC, :interp_mobil), (), (), Tuple{DataFrame, Tuple{Float64, Float64}, Int64, Int64, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}}, Tuple{}, DynamicPPL.DefaultContext}, spl::TemperedSampler{NUTS{Turing.Essential.ForwardDiffAD{40}, (), DiagEuclideanMetric}}; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ MCMCTempering C:\Users\Bharadwaj.julia\packages\MCMCTempering\ALY2z\src\stepping.jl:37
[5] step
@ C:\Users\Bharadwaj.julia\packages\MCMCTempering\ALY2z\src\stepping.jl:37 [inlined]
[6] macro expansion
@ C:\Users\Bharadwaj.julia\packages\AbstractMCMC\BPJCW\src\sample.jl:123 [inlined]
[7] macro expansion
@ C:\Users\Bharadwaj.julia\packages\ProgressLogging\6KXlp\src\ProgressLogging.jl:328 [inlined]
[8] macro expansion
@ C:\Users\Bharadwaj.julia\packages\AbstractMCMC\BPJCW\src\logging.jl:8 [inlined]
[9] mcmcsample(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(truth_data_fitting!), (:data, :ODEtspan, :num_variants, :tot_pop, :interp_IPTCC, :interp_mobil), (), (), Tuple{DataFrame, Tuple{Float64, Float64}, Int64, Int64, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::TemperedSampler{NUTS{Turing.Essential.ForwardDiffAD{40}, (), DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, discard_initial::Int64, thinning::Int64, chain_type::Type, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ AbstractMCMC C:\Users\Bharadwaj.julia\packages\AbstractMCMC\BPJCW\src\sample.jl:114
[10] #sample#16
@ C:\Users\Bharadwaj.julia\packages\AbstractMCMC\BPJCW\src\sample.jl:36 [inlined]
[11] #sample#15
@ C:\Users\Bharadwaj.julia\packages\AbstractMCMC\BPJCW\src\sample.jl:21 [inlined]
[12] top-level scope
@ REPL[53]:1
Can someone help me out, please? Following are my packages on Windows 10:
Julia 1.6.2
[ce233488] MCMCTempering v0.1.1
[fce5fe82] Turing v0.20.1
The text was updated successfully, but these errors were encountered: