|  | 
| 30 | 30 |             DynamicPPL.UntypedVarInfo | 
| 31 | 31 | 
 | 
| 32 | 32 |         # Evaluation works (and it would even do so in practice), but sampling | 
| 33 |  | -        # fill fail due to storing `Cauchy{Float64}` in `Vector{Normal{Float64}}`. | 
|  | 33 | +        # will fail due to storing `Cauchy{Float64}` in `Vector{Normal{Float64}}`. | 
| 34 | 34 |         @model function demo4() | 
| 35 | 35 |             x ~ Bernoulli() | 
| 36 | 36 |             if x | 
|  | 
| 40 | 40 |             end | 
| 41 | 41 |         end | 
| 42 | 42 |         @test DynamicPPL.Experimental.determine_suitable_varinfo(demo4()) isa | 
| 43 |  | -            DynamicPPL.NTVarInfo | 
| 44 |  | -        init_model = DynamicPPL.contextualize( | 
| 45 |  | -            demo4(), DynamicPPL.InitContext(DynamicPPL.InitFromPrior()) | 
| 46 |  | -        ) | 
| 47 |  | -        @test DynamicPPL.Experimental.determine_suitable_varinfo(init_model) isa | 
| 48 | 43 |             DynamicPPL.UntypedVarInfo | 
| 49 | 44 | 
 | 
| 50 | 45 |         # In this model, the type error occurs in the user code rather than in DynamicPPL. | 
|  | 
| 67 | 62 | 
 | 
| 68 | 63 |     @testset "demo models" begin | 
| 69 | 64 |         @testset "$(model.f)" for model in DynamicPPL.TestUtils.DEMO_MODELS | 
| 70 |  | -            sampling_model = contextualize(model, SamplingContext(model.context)) | 
| 71 | 65 |             # Use debug logging below. | 
| 72 | 66 |             varinfo = DynamicPPL.Experimental.determine_suitable_varinfo(model) | 
| 73 |  | -            # Check that the inferred varinfo is indeed suitable for evaluation and sampling | 
| 74 |  | -            f_eval, argtypes_eval = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
| 75 |  | -                model, varinfo | 
| 76 |  | -            ) | 
| 77 |  | -            JET.test_call(f_eval, argtypes_eval) | 
| 78 |  | - | 
| 79 |  | -            f_sample, argtypes_sample = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
| 80 |  | -                sampling_model, varinfo | 
| 81 |  | -            ) | 
| 82 |  | -            JET.test_call(f_sample, argtypes_sample) | 
| 83 | 67 |             # For our demo models, they should all result in typed. | 
| 84 | 68 |             is_typed = varinfo isa DynamicPPL.NTVarInfo | 
| 85 | 69 |             @test is_typed | 
| 86 |  | -            # If the test failed, check why it didn't infer a typed varinfo | 
|  | 70 | +            # If the test failed, check what the type stability problem was for | 
|  | 71 | +            # the typed varinfo. This is mostly useful for debugging from test | 
|  | 72 | +            # logs. | 
| 87 | 73 |             if !is_typed | 
|  | 74 | +                @info "Model `$(model.f)` is not type stable with typed varinfo." | 
| 88 | 75 |                 typed_vi = DynamicPPL.typed_varinfo(model) | 
| 89 |  | -                f_eval, argtypes_eval = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
| 90 |  | -                    model, typed_vi | 
|  | 76 | + | 
|  | 77 | +                @info "Evaluating with DefaultContext:" | 
|  | 78 | +                model = DynamicPPL.contextualize( | 
|  | 79 | +                    model, | 
|  | 80 | +                    DynamicPPL.setleafcontext(model.context, DynamicPPL.DefaultContext()), | 
|  | 81 | +                ) | 
|  | 82 | +                f, argtypes = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
|  | 83 | +                    model, varinfo | 
|  | 84 | +                ) | 
|  | 85 | +                JET.test_call(f, argtypes) | 
|  | 86 | + | 
|  | 87 | +                @info "Initialising with InitContext:" | 
|  | 88 | +                model = DynamicPPL.contextualize( | 
|  | 89 | +                    model, | 
|  | 90 | +                    DynamicPPL.setleafcontext(model.context, DynamicPPL.InitContext()), | 
| 91 | 91 |                 ) | 
| 92 |  | -                JET.test_call(f_eval, argtypes_eval) | 
| 93 |  | -                f_sample, argtypes_sample = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
| 94 |  | -                    sampling_model, typed_vi | 
|  | 92 | +                f, argtypes = DynamicPPL.DebugUtils.gen_evaluator_call_with_types( | 
|  | 93 | +                    model, varinfo | 
| 95 | 94 |                 ) | 
| 96 |  | -                JET.test_call(f_sample, argtypes_sample) | 
|  | 95 | +                JET.test_call(f, argtypes) | 
| 97 | 96 |             end | 
| 98 | 97 |         end | 
| 99 | 98 |     end | 
|  | 
0 commit comments