forked from cran/mgcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmgcv.c
executable file
·527 lines (455 loc) · 18.8 KB
/
mgcv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/* Source code for mgcv.dll/.so multiple smoothing parameter estimation code,
suitable for interfacing to R
Copyright (C) 2000-2012 Simon N. Wood simon.wood@r-project.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
(www.gnu.org/copyleft/gpl.html)
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA. */
#include <R.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tprs.h"
#include "mgcv.h"
#include "matrix.h"
#include "qp.h"
#include "general.h"
#define round(a) ((a)-floor(a) <0.5 ? (int)floor(a):(int) floor(a)+1)
/* The following are some rather ancient routines used to set up an example
additive model using regression (cubic) splines, via RGAMsetup(). */
void RUnpackSarray(int m,matrix *S,double *RS)
/* unpacks the R array RS into an array of matrices initialized to the correct dimensions
let kk = sum_{i=0}^k S[i].r*S[i].c
Then the kth matrix starts at element kk of RS and stops at element k(k+1)
... let this extracted array be M. S[k].M[i][j]=M[i+S[k].r*j] - in this way we ensure that
M can be extracted straight to a matrix in R with
A<-matrix(M,S[k].r,S[k].c)
*/
{ int start,i,j,k;
start=0;
for (k=0;k<m;k++)
{ for (i=0;i<S[k].r;i++) for (j=0;j<S[k].c;j++) S[k].M[i][j]=RS[start+i+S[k].r*j];
start += S[k].r*S[k].c;
}
}
void RPackSarray(int m,matrix *S,double *RS)
/* Packs an array of matrices S[] into an R array RS in the manner described in RUnpackSarray
*/
{ int start,i,j,k;
start=0;
for (k=0;k<m;k++)
{ for (i=0;i<S[k].r;i++) for (j=0;j<S[k].c;j++) RS[start+i+S[k].r*j]=S[k].M[i][j];
start += S[k].r*S[k].c;
}
}
matrix getD(h,nak) matrix h;int nak;
/* the matrix mapping the value of the spline to the gradients at the knots.
nak is true for 'not-a-knot' end conditions at the early end, otherwise
'natural' end conditions are used. If there are only 2 knots then the spline
is taken as a straight line if only 1 a constant. */
{ long i,j,n;
matrix T,D,Res;
n=h.r+1;
T=initmat(n,n);D=initmat(n,n);Res=initmat(n,n);
for (i=0;i<n;i++) for (j=0;j<n;j++)
{ T.M[i][j]=0.0;D.M[i][j]=0.0;}
if (n==1L)
{ Res.M[0][0]=0.0;
} else
if (n==2L)
{ Res.M[0][0]=Res.M[1][0]=-1.0/h.V[0];
Res.M[0][1]=Res.M[1][1]=1.0/h.V[0];
} else
{ for (i=0;i<n;i++) T.M[i][i]=2.0;
for (i=1;i<n-1;i++)
{ T.M[i][i-1]=h.V[i]/(h.V[i]+h.V[i-1]);
T.M[i][i+1]=1.0-T.M[i][i-1];
D.M[i][i-1]= -3.0*T.M[i][i-1]/h.V[i-1];
D.M[i][i+1]=3.0*T.M[i][i+1]/h.V[i];
D.M[i][i]= -(D.M[i][i+1]+D.M[i][i-1]);
}
if (!nak)
{ T.M[0][1]=1.0;D.M[0][0]= -3.0/h.V[0];D.M[0][1]= -D.M[0][0];}
else
{ T.M[0][1]=2.0*(h.V[0]+h.V[1])/h.V[1];
D.M[0][0]= -2.0*(3.0*h.V[0]+2.0*h.V[1])/
(h.V[0]*(h.V[0]+h.V[1]));
D.M[0][2]=2.0*h.V[0]*h.V[0]/
(h.V[1]*h.V[1]*(h.V[0]+h.V[1]));
D.M[0][1]= -D.M[0][0]-D.M[0][2];
}
T.M[n-1][n-2]=1.0;D.M[n-1][n-2]= -3.0/h.V[n-2];
D.M[n-1][n-1]= -D.M[n-1][n-2];
invert(&T);
matmult(Res,T,D,0,0);
}
freemat(T);freemat(D);
return(Res);
}
void MonoCon(matrix *A,matrix *b,matrix *x,int control,double lower,double upper )
/* gets matrices A and b for constraints of the form Ay>=b ensuring monotonic
change of the cubic spline interpolating (x_i,y_i) where h_i=x_{i+1}-x_i
control indicates type of constraints:
up=control/4 - 0 for decrease, 1 for increase
lo=(control-up*4)/2 - 1 for lower bound, 0 no lower bound
hi=(control-up*4-lo*2) - 1 for upper bound, 0 no upper bound
control = 4*up+2*lo+hi
*/
{ long i,j,n;
int up,lo,hi;
double m;
matrix h,D;
h=initmat(x->r-1,1L);
n=h.r;
for (i=0;i<n;i++) h.V[i]=x->V[i+1]-x->V[i];
D=getD(h,0);
up=control/4;control=control%4;
lo=control/2;control=control%2;
hi=control;
if (up) m= -1.0; else m=1.0;
(*A)=initmat(4*n+hi+lo,n+1);
for (i=0;i<n;i++)
{ for (j=0;j<n+1;j++)
{ if (j==i)
{ A->M[i][j]=(D.M[i][j]+3.0/h.V[i])*m; /**not certain of d.M update**/
A->M[i+n][j]=(D.M[i+1][j]+3.0/h.V[i])*m;
A->M[i+2*n][j]=m;
A->M[i+3*n][j]= -D.M[i][j]*m;
} else
if (j==(i+1))
{ A->M[i][j]=(D.M[i][j]-3.0/h.V[i])*m;
A->M[i+n][j]=(D.M[i+1][j]-3.0/h.V[i])*m;
A->M[i+2*n][j]= -m;
A->M[i+3*n][j]= -D.M[i][j]*m;
} else
{ A->M[i][j]=D.M[i][j]*m;
A->M[i+n][j]=D.M[i+1][j]*m;
A->M[i+2*n][j]=0.0;
A->M[i+3*n][j]= -D.M[i][j]*m;
}
}
}
*b = initmat(A->r,1L);
if (lo)
{ for (j=0;j<n+1;j++) A->M[4*n][j]=0.0;
if (up) A->M[4*n][0]=1.0; else A->M[4*n][n]=1.0;
b->V[4*n]=lower;
}
if (hi)
{ for (j=0;j<n+1;j++) A->M[4*n][j]=0.0;
if (up) A->M[4*n+lo][n]=-1.0; else A->M[4*n+lo][0]=-1.0;
b->V[4*n+lo]=upper;
}
freemat(D);
freemat(h);
}
void getFS(double *x,int n,double *S,double *F) {
/* x contains ascending knot sequence for a cubic regression spline
Routine finds wigglness penalty S and F such that F' maps function
values at knots to second derivatives. See Wood 2006 section 4.1.2.
F and S are n by n. F is F' in 4.1.2 notation.
*/
double *D,*ldB,*sdB,*h,*Di,*Di1,*Di2,*Fp,*Sp,a,b,c;
int i,j,n1,n2;
/* create knot spacing vector h */
h = (double *)CALLOC((size_t)(n-1),sizeof(double));
for (i=1;i<n;i++) h[i-1] = x[i]-x[i-1];
/* create n-2 by n matrix D: D[i,i] = 1/h[i], D[i,i+1] = -1/h[i]-1/h[i+1]
D[i,i+2] = 1/h[i+1], for i=0..(n-3). D is n-2 by n. */
D = (double *)CALLOC((size_t)(n*(n-2)),sizeof(double));
n1 = n-1;n2=n-2;
for (Di=D,Di1=D+n2,Di2=Di1+n2,i=0;i<n2;i++,Di+=n1,Di1+=n1,Di2+=n1) {
*Di = 1/h[i];*Di2 = 1/h[i+1];*Di1 = - *Di - *Di2;
}
/* create leading diagonal of B*/
ldB = (double *)CALLOC((size_t)(n2),sizeof(double));
for (i=0;i<n2;i++) ldB[i] = (h[i]+h[i+1])/3;
sdB = (double *)CALLOC((size_t)(n2-1),sizeof(double));
for (i=1;i<n2;i++) sdB[i-1] = h[i]/6;
/* Now find B^{-1}D using LAPACK routine DPTSV (result in D) */
F77_CALL(dptsv)(&n2,&n,ldB,sdB,D,&n2,&i);
/* copy B^{-1}D into appropriate part of F */
Di=D;
for (i=0;i<n;i++) {
Fp = F+i; /* point to row i of F */
*Fp=0.0;Fp+=n;
/* col i of D copied to row i of F */
for (j=0;j<n2;j++,Fp+=n,Di++) *Fp = *Di;
*Fp=0.0;
}
/* now create D'B^{-1}D efficiently */
a = 1/h[0]; /* row 0 */
for (Sp=S,Di=D,i=0;i<n;i++,Sp+=n,Di+=n2) *Sp = *Di * a;
if (n>3) {
a = -1/h[0] - 1/h[1];b = 1/h[1]; /* row 1 */
for (Sp=S+1,Di1=D+1,Di=D,i=0;i<n;i++,Sp+=n,Di+=n2,Di1+=n2) *Sp = *Di * a + *Di1 * b;
for (j=2;j<n2;j++) { /* rows 2 to n-3 */
a = 1/h[j-1];c = 1/h[j];b = -a -c;
for (Sp=S+j,Di=D+j-2,Di1 = D +j-1,Di2=D + j,i=0;i<n;i++,Sp+=n,Di+=n2,Di1+=n2,Di2+=n2)
*Sp = *Di * a + *Di1 * b + *Di2 * c;
}
j = n2; /* n-2 */
a = 1/h[j-1]; b = -1/h[j-1] - 1/h[j]; /* row n-2 */
for (Sp=S+n2,Di1=D+n2-1,Di=D+n2-2,i=0;i<n;i++,Sp+=n,Di+=n2,Di1+=n2) *Sp = *Di * a + *Di1 * b;
} else { /* D' has only one column */
a = -1/h[0] - 1/h[1];
for (Sp=S+1,Di=D,i=0;i<n;i++,Sp+=n,Di+=n2) *Sp = *Di * a;
}
j = n2;
a = 1/h[j]; /* row n-1 */
for (Sp=S+n1,Di=D+n2-1,i=0;i<n;i++,Sp+=n,Di+=n2) *Sp = *Di * a;
FREE(ldB);FREE(sdB);FREE(h);FREE(D);
} /* end of getFS*/
void crspl(double *x,int *n,double *xk, int *nk,double *X,double *S, double *F,int *Fsupplied) {
/* Routine to compute model matrix and optionally penalty matrix for cubic regression spline.
* nk knots are supplied in an increasing sequence in xk.
* n data are in x (arbitrary order).
* If Fsupplied!=0 then F' is matrix mapping function values at knots to second derivs,
otherwise F and the penalty matrix S are computed and returned, along with X.
*/
int i,j=0,k,extrapolate,jup,jmid;
double xlast=0.0,h=0.0,xi,kmax,kmin,ajm,ajp,cjm,cjp,*Fp,*Fp1,*Xp,xj,xj1,xik;
if (! *Fsupplied) getFS(xk,*nk,S,F);
kmax = xk[*nk-1];kmin = xk[0];
for (i=0;i<*n;i++) { /* loop through x */
xi = x[i];extrapolate=0;
/* find interval containing x[i] */
if (xi < kmin||xi>kmax) {
extrapolate=1;
} else if (i>0 && fabs(xlast-xi) < 2*h) { /* use simple direct search */
while (xi <= xk[j] && j > 0) j--;
while (xi > xk[j+1] && j < *nk-2) j++;
/* next line should not be needed, except under dodgy use of
fpu registers during optimization... */
if (j<0) j=0;
if (j > *nk-2) j = *nk - 2;
/* now xk[j] <= x[i] <= xk[j+1] */
} else { /* bisection search required */
j=0;jup=*nk-1;
while (jup-j>1) {
jmid = (jup+j) >> 1; /* a midpoint */
if (xi > xk[jmid]) j = jmid; else jup = jmid;
}
/* now xk[j] <= x[i] <= xk[j+1] */
} /* end of bisection */
/* knot interval containing x[i] now known. Compute spline basis */
if (extrapolate) { /* x[i] is outside knot range */
if (xi<kmin) {
j = 0;
h = xk[1] - kmin;
xik = xi - kmin;
cjm = -xik*h/3;
cjp = -xik*h/6;
Xp = X + i; /* ith row of X */
for (Fp = F,Fp1 = F + *nk,k=0;k < *nk;k++,Xp += *n,Fp++,Fp1++) *Xp = cjm * *Fp + cjp * *Fp1 ;
X[i] += 1 - xik/h;
X[i + *n] += xik/h;
} else { /* xi>kmax */
j = *nk-1;
h = kmax - xk[j-1];
xik = xi - kmax;
cjm= xik*h/6;
cjp = xik*h/3;
Xp = X + i; /* ith row of X */
for (Fp1 = F+ j * *nk,Fp = Fp1 - *nk,k=0;k < *nk;k++,Xp += *n,Fp++)
*Xp = cjm * *Fp + cjp * *Fp1 ;
X[i + *n * (*nk-2)] += - xik/h;
X[i + *n * (*nk-1)] += 1+ xik/h;
}
} else { /* routine evaluation */
xj = xk[j];xj1=xk[j+1];
h = xj1-xj; /* interval width */
ajm = (xj1 - xi);ajp = (xi-xj);
cjm = (ajm*(ajm*ajm/h - h))/6;
cjp = (ajp*(ajp*ajp/h - h))/6;
ajm /= h;ajp /= h;
Xp = X + i; /* ith row of X */
for (Fp = F+ j * *nk, Fp1 = F+(j+1)* *nk,k=0;k < *nk;k++,Xp += *n,Fp++,Fp1++)
*Xp = cjm * *Fp + cjp * *Fp1;
Xp = X + i + j * *n;
*Xp += ajm; Xp += *n; *Xp += ajp;
}
/* basis computation complete */
xlast=xi;
}
} /* end crspl */
void MinimumSeparation(double *x,int *n, int *d,double *t,int *m,double *dist) {
/* For each of n ppoints point x[i,] calculates the minimum Euclidian distance
to a point in m by d matrix t. These distances are stored in dist.
*/
int one=1,*ni;
kdtree_type kd;
kd_tree(t,m,d,&kd); /* build kd tree for target points */
ni = (int *)CALLOC((size_t)*n,sizeof(int));
k_newn_work(x,kd,t,dist,ni,n,m,d,&one);
// for (i=0;i<*n;i++) {
// k = closest(&kd,t,x + i * *d,*m,&j,-1); /* index of nearest neighbour of x[i,] */
// dist[i] = xidist(x + i * *d,t,k,*d, *m); /* distance to this nearest neighbour */
//}
FREE(ni);
free_kdtree(kd);
}
void MinimumSeparation_old(double *gx,double *gy,int *gn,double *dx,double *dy, int *dn,double *dist)
/* For each point gx[i],gy[i] calculates the minimum Euclidian distance to a point in dx[], dy[].
These distances are stored in dist.
Aweful routine: O(gn * dn) cost!!
*/
{
double sep,xx,yy,*dum,*xdum,*ydum;
int n,m;
n = *gn;m = *dn;
for (dum=dist;dum < dist + n; dum++,gx++,gy++)
{ xx= *gx - *dx;yy = *gy - *dy;*dum = xx*xx + yy*yy; /* first separation */
for (xdum=dx+1,ydum=dy+1;xdum < dx + m;xdum++,ydum++)
{ xx= *gx - *xdum;yy = *gy - *ydum;sep = xx*xx + yy*yy; /* subsequent separations */
if (sep < *dum) *dum = sep;
}
*dum = sqrt(*dum);
}
}
void RuniqueCombs(double *X,int *ind,int *r, int *c)
/* X is a matrix. This routine finds its unique rows and strips out the
duplicates. This is useful for finding out the number of unique covariate
combinations present in a set of data. */
{ matrix B,Xd;
int i,*ind1;
B=Rmatrix(X,(long)(*r),(long)(*c));
Xd=initmat(B.r,B.c+1);
Xd.c--;mcopy(&B,&Xd);freemat(B);Xd.c++;
for (i=0;i<Xd.r;i++) Xd.M[i][Xd.c-1]=(double)i;
ind1=Xd_strip(&Xd);
for (i=0;i<*r;i++) ind[i] = ind1[i]; /* copy index for return */
Xd.c--; /* hide index array */
RArrayFromMatrix(X,Xd.r,&Xd); /* NOTE: not sure about rows here!!!! */
*r = (int)Xd.r;
freemat(Xd);FREE(ind1);
}
void RMonoCon(double *Ad,double *bd,double *xd,int *control,double *lower,double *upper,int *n)
/* obtains coefficient matrices for imposing monotonicity (and optionally bounds) on a
cubic regression spline with n knots located as specified in xd.
control indicates type of constraints:
up=control/4 - 0 for decrease, 1 for increase
lo=(control-up*4)/2 - 1 for lower bound, 0 no lower bound
hi=(control-up*4-lo*2) - 1 for upper bound, 0 no upper bound
control = 4*up+2*lo+hi
lower and upper are the bounds to impose (ignored if control doesn't
indicate that they should be used).
Ad will have 4(n-1)+lo+hi rows and n columns
bd will have 4(n-1)+lo+hi rows
*/
{ int i;
matrix x,A,b;
x=initmat((long)*n,1L);
for (i=0;i<x.r;i++) x.V[i]=xd[i];
MonoCon(&A,&b,&x,*control,*lower,*upper);
RArrayFromMatrix(Ad,A.r,&A);
RArrayFromMatrix(bd,b.r,&b);
freemat(x);freemat(A);freemat(b);
}
void RPCLS(double *Xd,double *pd,double *yd, double *wd,double *Aind,double *bd,
double *Afd,double *Sd,
int *off,int *dim,double *theta, int *m,int *nar)
/* Interface routine for PCLS the constrained penalized weighted least squares solver.
nar is an array of dimensions. Let:
n=nar[0] - number of data
np=nar[1] - number of parameters
nai=nar[2] - number of inequality constraints
naf=nar[3] - number of fixed constraints
Problem to be solved is:
minimise ||W^0.5 (y - Xp)||^2 + p'Bp
subject to Ain p >= b & Af p = "constant"
where B = \sum_{i=1}^m \theta_i S_i and W=diag(w)
- in fact S_i are not stored whole - rather the smallest non-zero sub-matrix of each S_i is
stored in a densely packed form in S[]: see routines RpackSarray() and RUnpackSarray() for
details of the sub-matrix packing. off[i],off[i] is the location within the full S_i to
insert the sub-matrix actually stored which is of dimension dim[i] by dim[i].
W = diag(w)
on exit p contains the best fit parameter vector.
*/
{ matrix y,X,p,w,Ain,Af,b,*S;
int n,np,i,*active;
np=nar[1];n=nar[0];
/* unpack from R into matrices */
X=Rmatrix(Xd,(long)n,(long)np);
p=Rmatrix(pd,(long)np,1L);
y=Rmatrix(yd,(long)n,1L);
w=Rmatrix(wd,(long)n,1L);
if (nar[2]>0) Ain=Rmatrix(Aind,(long)nar[2],(long)np); else Ain.r=0L;
if (nar[3]>0) Af=Rmatrix(Afd,(long)nar[3],(long)np); else Af.r=0L;
if (nar[2]>0) b=Rmatrix(bd,(long)nar[2],1L);else b.r=0L;
if (*m) S=(matrix *)CALLOC((size_t) *m,sizeof(matrix));
else S=NULL; /* avoid spurious compiler warning */
for (i=0;i< *m;i++) S[i]=initmat((long)dim[i],(long)dim[i]);
RUnpackSarray(*m,S,Sd);
//if (nar[4]) H=initmat(y.r,y.r); else H.r=H.c=0L;
active=(int *)CALLOC((size_t)(p.r+1),sizeof(int)); /* array for active constraints at best fit active[0] will be number of them */
/* call routine that actually does the work */
PCLS(&X,&p,&y,&w,&Ain,&b,&Af,S,off,theta,*m,active);
/* copy results back into R arrays */
for (i=0;i<p.r;i++) pd[i]=p.V[i];
//if (H.r) RArrayFromMatrix(Hd,H.r,&H);
/* clear up .... */
FREE(active);
for (i=0;i< *m;i++) freemat(S[i]);
if (*m) FREE(S);
freemat(X);freemat(p);freemat(y);freemat(w);
//if (H.r) freemat(H);
if (Ain.r) freemat(Ain);
if (Af.r) freemat(Af);
if (b.r) freemat(b);
#ifdef MEM_CHECK
dmalloc_log_unfreed(); dmalloc_verify(NULL);
#endif
}
/*********************************************************************************************/
/* Bug fix and revision record:
1. 20/10/00: Knot placement method in GAMsetup() modified. Previous method had an error, so
that when df for a term was close to the number of data, a non-existent covariate value
(i.e. out of array bound). New code also yields more regular placement, and now deals with
repeat values of covariates.
3. 5/1/01: Modified RGAMsetup(), GAMsetup(), gam_map() and RGAMpredict() so that nsdf is now
total number of non-spline parameters including any constant. Hence R code must now provide
column for constant explicitly.
4. 5/1/01: fixed bug in RGAMpredict - standard errors of parametric components of linear predictor
were wrongly calculated.
5. 30/5/01: GAMsetup re-organised to ease introduction of new tprs basis and multi-dimensional
smooths
6. 10/2001: b0,b1,d0,d1 modified so that extrapolation is linear beyond ends of spline as
it should be for a natural spline.
7. 31/10/01: mgcv.c covariance and edf calculations made more robust - for poorly conditioned
cases choleski can fail in calculation of covariance matrix: in these cases use svd instead.
8. 2/11/01: RGAMpredict, RGAMsetup, GAMsetup, and gam_map modified to take array of penalty
orders, p_order. This allows user explicit control of the order of penalty in spline terms,
while still supporting autoselection when p_order[i]==0.
9. 9/11/01: RGAMpredict modified to allow 5th control option, which returns a matrix mapping
params to l.p. vector
10. 9/11/01: New routine RPackSArray and RUnpackSarray so that storage of arrays of penalty
matrices is not so wasteful.
11. 12/11/01: UZ and Xu now packed efficiently using above 2 routines.
12. 12/11/01: Routine RPCLS added for solving linearly constrained penalized least squares problems
by quadratic programming
13. 13/11/01: Routine RMonoCon added for finding monotonic constraint matrices for cubic regression
splines.
14. 5/2/02: GAMsetup and RGAMsetup modified to deal with "by" variables - covariates that multiply a
whole smooth term. The centering conditions have not been changed.
15. 6/9/02: Slight modification to gam_map() - terms are not calculated if corresponding by variable
is zero. This can save flops in fairly advanced use (e.g. posum package)
16.23/10/02: mgcv modified in order to check that Tr(A) calculations are sensible, and that termwise
effective degrees of freedom are calculated correctly. The problem arises with ill-conditioned
models when an inversion required for the term-wise effective degrees of freedom can
become unstable.
17.23/10/02: Bug in TrA calculation when smoothing parameters supplied. X'X used in place of X'WX - fixed.
18. 24/1/04: RGAMpredict, RGAMsetup, GAMsetup and gam_map deleted, to make way for a more object oriented
and modular approach to model setup and prediction, based on "smooth objects". Constructor and
prediction code added instead.
*/