Pytorch0.4 codes for InsightFace
- This repo is a reimplementation of Arcface(paper), or Insightface(github)
- For models, including the pytorch implementation of the backbone modules of Arcface and MobileFacenet
- Codes for transform MXNET data records in Insightface(github) to Image Datafolders are provided
- Pretrained models are posted, include the MobileFacenet and IR-SE50 in the original paper
[MobileFaceNet@BaiduDrive](Coming Soon), [@GoogleDrive](Coming Soon) (coming soon)
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
0.9952 | 0.9962 | 0.9504 | 0.9622 | 0.9557 | 0.9107 | 0.9386 |
[LResNet50E-IR@BaiduDrive](Coming Soon), [@GoogleDrive](Coming Soon) (coming soon)
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
? | ? | ? | ? | ? | ? | ? |
- clone
git clone https://github.com/TropComplique/mtcnn-pytorch.git
Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:
data/facebank/
---> id1/
---> id1_1.jpg
---> id2/
---> id2_1.jpg
---> id3/
---> id3_1.jpg
---> id3_2.jpg
If more than 1 image appears in one folder, an average embedding will be calculated
download the refined dataset from original post: (emore recommended)
-
after unzip the files to 'data' path, run :
python prepare_data.py
after the execution, you should find following structure:
faces_emore/
---> agedb_30
---> calfw
---> cfp_ff
---> cfp_fp
---> cfp_fp
---> cplfw
--->imgs
---> lfw
---> vgg2_fp
-
2 download the desired weights [Mobilefacenet] , [IR-SE50]to model folder [Mobilefacenet]:https://pan.baidu.com/s/1PwHjtGLAmAoG5LJkQk5LSQ [IR-SE50]:https://pan.baidu.com/s/1PwHjtGLAmAoG5LJkQk5LSQ
-
3 to take a picture, run
python take_pic.py -n name
press q to take a picture, it will only capture 1 highest possibility face if more than 1 person appear in the camera
-
4 or you can put any preexisting photo into the facebank directory, the file structure is following:
-
facebank/ name1/ photo1.jpg photo2.jpg ... name2/ photo1.jpg photo2.jpg ... ..... if more than 1 image appears in the directory, average embedding will be calculated
-
5 to start
python face_verify.py
```
python infer_on_video.py -f [video file name] -s [save file name]
```
the video file should be inside the data/face_bank folder
- Video Detection Demo @Youtube
```
python train.py -b [batch_size] -lr [learning rate] -e [epochs]
```