forked from jphong89/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from vbvg2008/master
updated FE 1.0 working examples
- Loading branch information
Showing
2 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
from fastestimator.pipeline.static.preprocess import Minmax | ||
from fastestimator.estimator.estimator import Estimator | ||
from fastestimator.pipeline.pipeline import Pipeline | ||
from fastestimator.architecture.lenet import LeNet | ||
from fastestimator.estimator.trace import Accuracy | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
class Network: | ||
def __init__(self): | ||
self.model = LeNet() | ||
self.optimizer = tf.optimizers.Adam() | ||
self.loss = tf.losses.SparseCategoricalCrossentropy() | ||
|
||
def train_op(self, batch): | ||
with tf.GradientTape() as tape: | ||
predictions = self.model(batch["x"]) | ||
loss = self.loss(batch["y"], predictions) | ||
gradients = tape.gradient(loss, self.model.trainable_variables) | ||
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) | ||
return predictions, loss | ||
|
||
def eval_op(self, batch): | ||
predictions = self.model(batch["x"], training=False) | ||
loss = self.loss(batch["y"], predictions) | ||
return predictions, loss | ||
|
||
def get_estimator(epochs=2, batch_size=32, optimizer="adam"): | ||
|
||
(x_train, y_train), (x_eval, y_eval) = tf.keras.datasets.mnist.load_data() | ||
x_train = np.expand_dims(x_train, -1) | ||
x_eval = np.expand_dims(x_eval, -1) | ||
|
||
pipeline = Pipeline(batch_size=batch_size, | ||
feature_name=["x", "y"], | ||
train_data={"x": x_train, "y": y_train}, | ||
validation_data={"x": x_eval, "y": y_eval}, | ||
transform_train= [[Minmax()], []]) | ||
|
||
traces = [Accuracy(feature_true="y")] | ||
|
||
estimator = Estimator(network= Network(), | ||
pipeline=pipeline, | ||
epochs= epochs, | ||
traces= traces) | ||
return estimator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
from fastestimator.estimator.estimator import Estimator | ||
from fastestimator.pipeline.pipeline import Pipeline | ||
from tensorflow.keras import layers | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
class Network: | ||
def __init__(self): | ||
self.discriminator = self.make_discriminator_model() | ||
self.generator = self.make_generator_model() | ||
self.cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) | ||
self.generator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
self.discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
|
||
def make_generator_model(self): | ||
model = tf.keras.Sequential() | ||
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) | ||
model.add(layers.BatchNormalization()) | ||
model.add(layers.LeakyReLU()) | ||
model.add(layers.Reshape((7, 7, 256))) | ||
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size | ||
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) | ||
assert model.output_shape == (None, 7, 7, 128) | ||
model.add(layers.BatchNormalization()) | ||
model.add(layers.LeakyReLU()) | ||
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) | ||
assert model.output_shape == (None, 14, 14, 64) | ||
model.add(layers.BatchNormalization()) | ||
model.add(layers.LeakyReLU()) | ||
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) | ||
assert model.output_shape == (None, 28, 28, 1) | ||
return model | ||
|
||
def make_discriminator_model(self): | ||
model = tf.keras.Sequential() | ||
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) | ||
model.add(layers.LeakyReLU()) | ||
model.add(layers.Dropout(0.3)) | ||
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) | ||
model.add(layers.LeakyReLU()) | ||
model.add(layers.Dropout(0.3)) | ||
model.add(layers.Flatten()) | ||
model.add(layers.Dense(1)) | ||
return model | ||
|
||
def discriminator_loss(self, real_output, fake_output): | ||
real_loss = self.cross_entropy(tf.ones_like(real_output), real_output) | ||
fake_loss = self.cross_entropy(tf.zeros_like(fake_output), fake_output) | ||
total_loss = real_loss + fake_loss | ||
return total_loss | ||
|
||
def generator_loss(self, fake_output): | ||
return self.cross_entropy(tf.ones_like(fake_output), fake_output) | ||
|
||
def train_op(self, batch): | ||
noise = tf.random.normal([32, 100]) | ||
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: | ||
generated_images = self.generator(noise, training=True) | ||
|
||
real_output = self.discriminator(batch["x"], training=True) | ||
fake_output = self.discriminator(generated_images, training=True) | ||
|
||
gen_loss = self.generator_loss(fake_output) | ||
disc_loss = self.discriminator_loss(real_output, fake_output) | ||
|
||
gradients_of_generator = gen_tape.gradient(gen_loss, self.generator.trainable_variables) | ||
gradients_of_discriminator = disc_tape.gradient(disc_loss, self.discriminator.trainable_variables) | ||
|
||
self.generator_optimizer.apply_gradients(zip(gradients_of_generator, self.generator.trainable_variables)) | ||
self.discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, self.discriminator.trainable_variables)) | ||
return generated_images, (gen_loss, disc_loss) | ||
|
||
def eval_op(self, batch): | ||
noise = tf.random.normal([32, 100]) | ||
generated_images = self.generator(noise, training=False) | ||
real_output = self.discriminator(batch["x"], training=False) | ||
fake_output = self.discriminator(generated_images, training=False) | ||
gen_loss = self.generator_loss(fake_output) | ||
disc_loss = self.discriminator_loss(real_output, fake_output) | ||
return generated_images, (gen_loss, disc_loss) | ||
|
||
class Myrescale: | ||
def transform(self, data, decoded_data=None): | ||
data = tf.cast(data, tf.float32) | ||
data = (data - 127.5) / 127.5 | ||
return data | ||
|
||
def get_estimator(): | ||
(x_train, _), (x_eval, _) = tf.keras.datasets.mnist.load_data() | ||
x_train = np.expand_dims(x_train, -1) | ||
x_eval = np.expand_dims(x_eval, -1) | ||
|
||
pipeline = Pipeline(batch_size=32, | ||
feature_name=["x"], | ||
train_data={"x": x_train}, | ||
validation_data={"x": x_eval}, | ||
transform_train= [[Myrescale()], []]) | ||
|
||
estimator = Estimator(network= Network(), | ||
pipeline=pipeline, | ||
epochs= 2) | ||
return estimator |