forked from dmlc/gluon-nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_metrics.py
59 lines (53 loc) · 2.38 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
import numpy as np
from gluonnlp.metric import MaskedAccuracy, LengthNormalizedLoss
from mxnet.test_utils import assert_almost_equal
def test_acc():
pred = mx.nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])
label = mx.nd.array([0, 1, 1])
mask = mx.nd.array([1, 1, 0])
metric = MaskedAccuracy()
metric.update([label], [pred], [mask])
_, acc = metric.get()
matched = (np.argmax(pred.asnumpy(), axis=1) == label.asnumpy()) * mask.asnumpy()
valid_count = mask.asnumpy().sum()
expected_acc = 1.0 * matched.sum() / valid_count
assert acc == expected_acc
metric = MaskedAccuracy()
metric.update([label], [pred])
_, acc = metric.get()
matched = (np.argmax(pred.asnumpy(), axis=1) == label.asnumpy())
valid_count = len(label)
expected_acc = 1.0 * matched.sum() / valid_count
assert acc == expected_acc
def test_normalized_loss(rtol=1e-5, atol=1e-5):
tgt_valid_length = mx.nd.array([1, 3, 2, 7])
loss = mx.nd.array([1.1, 2.5, 3.8, 5.3])
metric = LengthNormalizedLoss()
metric.update([0, tgt_valid_length], loss)
_, metric_loss = metric.get()
expected_loss = loss.asnumpy().sum() / tgt_valid_length.asnumpy().sum()
assert_almost_equal(metric_loss, expected_loss, rtol=rtol, atol=atol)
tgt_valid_length = mx.nd.array([8, 4, 2, 7])
loss = mx.nd.array([8.7, 2.3, 1.8, 9.3])
metric = LengthNormalizedLoss()
metric.update([0, tgt_valid_length], loss)
_, metric_loss = metric.get()
expected_loss = loss.asnumpy().sum() / tgt_valid_length.asnumpy().sum()
assert_almost_equal(metric_loss, expected_loss, rtol=rtol, atol=atol)