forked from HYCOM/HYCOM-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathz_woa.f
965 lines (965 loc) · 31.7 KB
/
z_woa.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
PROGRAM TSZINT
USE MOD_ZA ! HYCOM array I/O interface
IMPLICIT NONE
C
C DEFINE INPUT CLIMATOLOGY GRID.
C
C SETUP FOR 0.25 DEGREE WOA01 HIGH RES. GLOBAL CLIMATOLOGY.
C
INTEGER IWI,JWI,KWI
REAL*4 XFIN,YFIN,DXIN,DYIN
PARAMETER (IWI=1440, JWI=720, KWI=33)
PARAMETER (XFIN=0.125, YFIN=-89.875, DXIN=0.25, DYIN=0.25)
C
C CLIM ARRAYS.
C
INTEGER, ALLOCATABLE :: MSK(:,:)
REAL*4, ALLOCATABLE :: PLON(:,:),PLAT(:,:),XAF(:,:),YAF(:,:)
REAL*4, ALLOCATABLE :: TM(:,:),SM(:,:),RM(:,:),RT(:,:)
C
REAL*4 XAMAX,XAMIN,YAMAX,YAMIN
REAL*4 TSEAIN(IWI,JWI),SSEAIN(IWI,JWI),RSEAIN(IWI,JWI),
+ ZLEV(KWI)
CHARACTER PREAMBL(5)*79
C
C INTERPOLATION ARRAYS.
C
INTEGER IBD(4)
REAL*4 TSEAI(IWI+4,JWI+4),SSEAI(IWI+4,JWI+4),RSEAI(IWI+4,JWI+4)
REAL*4 FXI(IWI+4),FYI(JWI+4),
+ WQSEA3(IWI+4,JWI+4,3),WK(3*(IWI+JWI+8)+1)
C
C NAMELIST.
C
INTEGER JPR
COMMON/NPROCS/ JPR
SAVE /NPROCS/
C
CHARACTER*40 CTITLE
NAMELIST/AFTITL/ CTITLE
INTEGER ICTYPE,IFRZ,KSIGMA,INTERP,MONTH,ITEST,JTEST
NAMELIST/AFFLAG/ ICTYPE,IFRZ,KSIGMA,INTERP,MONTH,ITEST,JTEST,JPR
C
C**********
C*
C 1) FROM UNFORMATTED Sig0-T OR Sig0-S OR T-S DATA ON ITS NATIVE GRID,
C CREATE A FORMATTED MODEL GRID CLIM FILE SUITABLE FOR INPUT TO THE
C HYCOM ISOPYCNAL CLIMATOLOGY GENERATOR OVER THE GIVEN REGION.
C
C INTERPOLATION IS EITHER PIECEWISE BILINEAR OR CUBIC SPLINE.
C
C 2) PARAMETERS:
C
C NATIVE CLIM GRID SPECIFICATION, SEE (4):
C
C IWI = 1ST DIMENSION OF CLIM GRID
C JWI = 2ND DIMENSION OF CLIM GRID
C JWI = 3RD DIMENSION OF CLIM GRID (NUMBER OF Z-LEVELS)
C XFIN = LONGITUDE OF 1ST CLIM GRID POINT
C YFIN = LATITUDE OF 1ST CLIM GRID POINT
C DXIN = CLIM LONGITUDINAL GRID SPACING
C DYIN = CLIM LATITUDINAL GRID SPACING
C
C 3) NAMELIST INPUT:
C
C /AFTITL/
C CTITLE - ONE (40-CHARACTER) LINE TITLE.
C
C /AFFLAG/
C ICTYPE - INPUT FILE TYPE
C =1; Sigma-0 AND POTENTIAL TEMPERATURE (DEAFULT)
C =2; Sigma-0 AND SALINITY
C =3; POTENTIAL TEMPERATURE AND SALINITY
C =4; LAND/SEA MASK (AS SALINMITY)
C IFRZ - FREEZING POINT TYPE
C =0; NONE
C =1; CONSTANT (DEFAULT)
C =2; SALINITY DEPENDENT
C KSIGMA - OUTPUT FILE TYPE
C =0; Sigma-0, POTENTIAL TEMPERATURE AND SALINITY
C =2; Sigma-2, POTENTIAL TEMPERATURE AND SALINITY
C INTERP - INTERPOLATION FLAG.
C =0; PIECEWISE LINEAR
C =1; CUBIC SPLINE (DEFAULT)
C MONTH - MONTH OF CLIMATOLOGY (1 TO 12)
C ITEST - 1ST ARRAY INDEX FOR DIAGNOSTIC PRINTOUT
C =0; NO DIAGNOSTIC PRINTOUT
C JTEST - 2ND ARRAY INDEX FOR DIAGNOSTIC PRINTOUT
C =0; NO DIAGNOSTIC PRINTOUT
C
C 4) INPUT:
C ON UNIT 5: NAMELIST /AFTITL/, /AFTIME/
C ON UNIT 71: UNFORMATTED NATIVE Sig0 CLIM FILE, SEE (5).
C ON UNIT 72: UNFORMATTED NATIVE PotT CLIM FILE, SEE (5).
C ON UNIT 73: UNFORMATTED NATIVE S CLIM FILE, SEE (5).
C OUTPUT:
C ON UNIT 11: UNFORMATTED MODEL CLIM FILE, SEE (6).
C ON UNIT 12: UNFORMATTED MODEL CLIM FILE, SEE (6).
C ON UNIT 13: UNFORMATTED MODEL CLIM FILE, SEE (6).
C
C 5) THE INPUT CLIM FIELDS ON UNITS 71-73, ARE ON THE 'NATIVE' LAT-LON
C GRID, STARTING AT THE POINT 'XFIN' EAST AND 'YFIN' NORTH WITH
C 'YFIN' NORTH WITH GRIDSIZE 'DXIN' BY 'DYIN' DEGREES. THE
C INPUT ARRAY SIZE IS 'IWI' BY 'JWI', AND THERE ARE NO REPEATED
C NODES (EVEN FOR GLOBAL DATA SETS). THE CONTENTS OF EACH INPUT
C FILE IS AS FOLLOWS:
C RECORD 1: A 40-CHARACTER TITLE
C RECORD 2: IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN,ZLEV
C RECORD 2+N: CLIM Z-LEVEL N, N=1...KWI.
C
C ALL CLIMATOLOGY FIELDS MUST BE DEFINED AT EVERY GRID POINT,
C INCLUDING LAND AND BELOW THE OCEAN FLOOR.
C THE POTENTIAL DENSITY FIELDS MUST BE STABALY STRATIFIED
C IN THE VERTICAL EVERYWHERE.
C
C 6) THE OUTPUT CLIMS ARE AT EVERY GRID POINT OF THE MODEL'S 'P' GRID.
C ARRAY SIZE IS 'IDM' BY 'JDM'.
C
C 7) SEVERAL STATISTICS ARE WRITTEN OUT IN ORDER TO CHECK THE
C INTERPOLATION BETWEEN VARIOUS MACHINES. MIN, MAX, MEAN AND RMS
C OF THE ENTIRE BASIN ARE OUTPUT FOR (TM, SM, RM) FOR EACH
C RECORD. NOTE HOWEVER THAT THESE VALUES MAY NOT REPRESENT THE
C STATISTICS OF THE CLIMS AS SEEN BY THE MODEL, IF THE INPUT CLIM
C DATA HAS NON-REALISTIC VALUES OVER LAND. IT IS UP TO THE USER
C TO CHECK THE LOG FILES FOR CONSISTENCY BETWEEN MACHINES.
C
C 8) ALAN J. WALLCRAFT, PLANNING SYSTEMS INC., OCTOBER 1995.
C BASED ON EARILER VERSIONS BY SEVERAL AUTHORS.
C*
C**********
C
EXTERNAL LINEAR, AVERMS,MINMAX
C
REAL*4 ZERO,RADIAN
PARAMETER (ZERO=0.0, RADIAN=57.2957795)
REAL*8 DZERO,DTHIRD
PARAMETER (DZERO=0.D0,DTHIRD=1.D0/3.D0)
C
CHARACTER*80 CLINE
CHARACTER*40 CCNAME
INTEGER IUNIT,IWIT,JWIT,KWIT
REAL*4 XFINT,YFINT,DXINT,DYINT
REAL*4 HMINA,HMINB,HMAXA,HMAXB
C
INTEGER I,IWIX,J,KREC
REAL*4 XFD,YFD,DXD,DYD
REAL*4 XLIN,XFDX,XOV,YOU,
+ XMIN,XMAX,XAVE,XRMS,TFRZ
C
INTEGER LEN_TRIM
CHARACTER*11 CMONTH(12)
DATA CMONTH / ', January',
+ ', February',
+ ', March',
+ ', April',
+ ', May',
+ ', June',
+ ', July',
+ ', August',
+ ', September',
+ ', October',
+ ', November',
+ ', December' /
C
C STATEMENT FUNCTIONS.
C
REAL*8 C1,C2,C3,C4,C5,C6,C7
C --- coefficients for sigma-0 (based on Brydon & Sun fit)
DATA C1,C2,C3,C4,C5,C6,C7/
. -1.36471E-01, 4.68181E-02, 8.07004E-01,-7.45353E-03,-2.94418E-03,
. 3.43570E-05, 3.48658E-05/
C
REAL*4 R4
REAL*8 R8
REAL*8 R,S,T
REAL*8 A0,A1,A2,CUBQ,CUBR,CUBAN,CUBRL,CUBIM,TOFSIG,SOFSIG,SIG
C
C --- auxiliary statement for real*4 to real*8 conversion
R8(R4)=R4
C
C --- auxiliary statements for finding root of 3rd degree polynomial
A0(S)=(C1+C3*S)/C6
A1(S)=(C2+C5*S)/C6
A2(S)=(C4+C7*S)/C6
CUBQ(S)=DTHIRD*A1(S)-(DTHIRD*A2(S))**2
CUBR(R,S)=DTHIRD*(0.5D0*A1(S)*A2(S)-1.5D0*(A0(S)-R/C6))
. -(DTHIRD*A2(S))**3
C --- if q**3+r**2>0, water is too dense to yield real root at given
C --- salinitiy. setting q**3+r**2=0 in that case is equivalent to
C --- lowering sigma until a double real root is obtained.
CUBAN(R,S)=DTHIRD*ATAN2(SQRT(MAX(DZERO,
. -(CUBQ(S)**3+CUBR(R,S)**2))),CUBR(R,S))
CUBRL(R,S)=SQRT(-CUBQ(S))*COS(CUBAN(R,S))
CUBIM(R,S)=SQRT(-CUBQ(S))*SIN(CUBAN(R,S))
C
C --- temp (deg c) as a function of sigma and salinity (mil)
TOFSIG(R,S)=-CUBRL(R,S)+SQRT(3.)*CUBIM(R,S)-DTHIRD*A2(S)
C
C --- salinity (mil) as a function of sigma and temperature (deg c)
SOFSIG(R,T)=(R-C1-T*(C2+T*(C4+C6*T)))/(C3+T*(C5+C7*T))
C
C --- sigma-theta as a function of temp (deg c) and salinity (mil)
C --- (friedrich-levitus 3rd degree polynomial fit)
SIG(T,S)=(C1+C3*S+T*(C2+C5*S+T*(C4+C7*S+C6*T)))
C
C --- MODEL ARRAYS.
C
CALL XCSPMD !define idm,jdm
ALLOCATE( MSK(IDM,JDM) )
ALLOCATE( PLON(IDM,JDM) )
ALLOCATE( PLAT(IDM,JDM) )
ALLOCATE( XAF(IDM,JDM) )
ALLOCATE( YAF(IDM,JDM) )
ALLOCATE( TM(IDM,JDM) )
ALLOCATE( SM(IDM,JDM) )
ALLOCATE( RM(IDM,JDM) )
ALLOCATE( RT(IDM,JDM) )
C
C NAMELIST INPUT.
C
CALL ZHOPEN(6, 'FORMATTED', 'UNKNOWN', 0)
C
CTITLE = ' '
WRITE(6,*) 'READING /AFTITL/'
CALL ZHFLSH(6)
READ( 5,AFTITL)
WRITE(6,AFTITL)
C
ICTYPE = 1
IFRZ = 1
KSIGMA = 0
INTERP = 1
MONTH = 1
ITEST = 0
JTEST = 0
JPR = 8
WRITE(6,*) 'READING /AFFLAG/'
CALL ZHFLSH(6)
READ( 5,AFFLAG)
WRITE(6,AFFLAG)
WRITE(6,*)
CALL ZHFLSH(6)
C
C GRID INPUT.
C
CALL ZAIOST
C
CALL ZHOPNC(21, 'regional.grid.b', 'FORMATTED', 'OLD', 0)
CALL ZAIOPF('regional.grid.a', 'OLD', 21)
C
READ(21,*) ! skip idm
READ(21,*) ! skip jdm
READ(21,*) ! skip mapflg
READ(21,'(A)') CLINE
I = INDEX(CLINE,'=')
READ (CLINE(I+1:),*) HMINB,HMAXB
CALL ZAIORD(PLON,MSK,.FALSE., HMINA,HMAXA, 21)
IF (ABS(HMINA-HMINB).GT.ABS(HMINB)*1.E-4 .OR.
& ABS(HMAXA-HMAXB).GT.ABS(HMAXB)*1.E-4 ) THEN
WRITE(6,'(/ a / a,1p3e14.6 / a,1p3e14.6 /)')
& 'error - .a and .b grid files not consistent (plon):',
& '.a,.b min = ',HMINA,HMINB,HMINA-HMINB,
& '.a,.b max = ',HMAXA,HMAXB,HMAXA-HMAXB
CALL ZHFLSH(6)
STOP
ENDIF
C
READ(21,'(A)') CLINE
I = INDEX(CLINE,'=')
READ (CLINE(I+1:),*) HMINB,HMAXB
CALL ZAIORD(PLAT,MSK,.FALSE., HMINA,HMAXA, 21)
IF (ABS(HMINA-HMINB).GT.ABS(HMINB)*1.E-4 .OR.
& ABS(HMAXA-HMAXB).GT.ABS(HMAXB)*1.E-4 ) THEN
WRITE(6,'(/ a / a,1p3e14.6 / a,1p3e14.6 /)')
& 'error - .a and .b grid files not consistent (plat):',
& '.a,.b min = ',HMINA,HMINB,HMINA-HMINB,
& '.a,.b max = ',HMAXA,HMAXB,HMAXA-HMAXB
CALL ZHFLSH(6)
STOP
ENDIF
C
CLOSE(UNIT=21)
CALL ZAIOCL(21)
C
C INITIALIZE OUTPUT.
C
CTITLE = CTITLE(1:LEN_TRIM(CTITLE)) // CMONTH(MONTH)
WRITE(6,6000) 'OUTPUT:',CTITLE
CALL ZHFLSH(6)
C
CALL ZAIOPN('NEW', 10)
CALL ZAIOPN('NEW', 11)
CALL ZAIOPN('NEW', 12)
C
CALL ZHOPEN(10, 'FORMATTED', 'NEW', 0)
CALL ZHOPEN(11, 'FORMATTED', 'NEW', 0)
CALL ZHOPEN(12, 'FORMATTED', 'NEW', 0)
C
PREAMBL(1) = CTITLE
PREAMBL(2) = ' '
PREAMBL(3) = ' '
PREAMBL(4) = ' '
WRITE(PREAMBL(5),'(A,2I5)')
+ 'i/jdm =',
+ IDM,JDM
C
PREAMBL(2) = 'Potential Temperature'
WRITE(10,4101) PREAMBL
C
IF (ICTYPE.NE.4) THEN
PREAMBL(2) = 'Salinity'
ELSE
PREAMBL(2) = 'Salinity Land/Sea Mask'
ENDIF
WRITE(11,4101) PREAMBL
C
IF (KSIGMA.EQ.0) THEN
PREAMBL(2) = 'Potential Density (Sigma-0)'
WRITE(12,4101) PREAMBL
ELSEIF (KSIGMA.EQ.2) THEN
PREAMBL(2) = 'Potential Density (Sigma-2)'
WRITE(12,4101) PREAMBL
ELSE
WRITE(6,*)
WRITE(6,*) 'ERROR - KSIGMA MUST BE 0 OR 2'
WRITE(6,*)
STOP
ENDIF
C
WRITE(6,*)
WRITE(6, 4101) PREAMBL
WRITE(6,*)
C
C INITIALIZE CLIMS.
C
IF (ICTYPE.EQ.1) THEN
IUNIT=71
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
IUNIT=72
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
ELSEIF (ICTYPE.EQ.2) THEN
IUNIT=71
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
IUNIT=73
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
ELSEIF (ICTYPE.EQ.3) THEN
IUNIT=72
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
IUNIT=73
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
ELSE
IUNIT=73
CALL ZHOPEN(IUNIT, 'UNFORMATTED', 'OLD', 0)
READ(IUNIT)
CCNAME=' '
READ(IUNIT) IWIT,JWIT,KWIT,XFINT,YFINT,DXINT,DYINT,ZLEV
IF (IWIT.NE.IWI .OR.
+ JWIT.NE.JWI .OR.
+ KWIT.NE.KWI .OR.
+ ABS(XFINT-XFIN).GT.0.01 .OR.
+ ABS(YFINT-YFIN).GT.0.01 .OR.
+ ABS(DXINT-DXIN).GT.0.01 .OR.
+ ABS(DYINT-DYIN).GT.0.01 ) THEN
WRITE(6,9000) IUNIT,IWI,JWI,KWI,XFIN,YFIN,DXIN,DYIN
CALL ZHFLSH(6)
STOP
ENDIF
ENDIF
C
C DEFINE THE GRID COORDINATES.
C
IF (IWI*DXIN.GE.359.9) THEN
IF (ABS(IWI * DXIN - 360.0) .GT. 0.01) THEN
WRITE(6,9050)
CALL ZHFLSH(6)
STOP
ENDIF
IWIX = IWI + 1
IBD(1) = 3
IBD(2) = 3
IBD(3) = 2
IBD(4) = 2
ELSE
IWIX = IWI
IBD(1) = 2
IBD(2) = 2
IBD(3) = 2
IBD(4) = 2
ENDIF
C
C CONVERT HYCOM LON,LAT TO CLIMATOLOGY ARRAY COORDS.
C
XLIN = XFIN + (IWIX-1)*DXIN
XAMIN = 2*IWI
XAMAX = 0
DO J= 1,JDM
DO I= 1,IDM
XOV = PLON(I,J)
IF (XOV.LT.XFIN) THEN
XOV = XOV + 360.0
ELSEIF (XOV.GE.XLIN) THEN
XOV = XOV - 360.0
ENDIF
C
XAF(I,J) = 3.0 + (XOV - XFIN)/DXIN
C
IF (MOD(J,100).EQ.1 .OR. J.EQ.JDM) THEN
IF (MOD(I,10).EQ.1 .OR. I.EQ.IDM) THEN
WRITE(6,'("I,J,LONV,XAF =",2I5,2F10.3)') I,J,XOV,XAF(I,J)
ENDIF
ENDIF
XAMIN = MIN( XAMIN, XAF(I,J) )
XAMAX = MAX( XAMAX, XAF(I,J) )
ENDDO
ENDDO
C
YAMIN = 2*JWI
YAMAX = 0
DO I= 1,IDM
DO J= 1,JDM
YOU = PLAT(I,J)
C
YAF(I,J) = 3.0 + (YOU - YFIN)/DYIN
C
IF (MOD(I,100).EQ.1 .OR. I.EQ.IDM) THEN
IF (MOD(J,10).EQ.1 .OR. J.EQ.JDM) THEN
WRITE(6,'("I,J,LATU,YAF =",2I5,2F10.3)') I,J,YOU,YAF(I,J)
ENDIF
ENDIF
YAMIN = MIN( YAMIN, YAF(I,J) )
YAMAX = MAX( YAMAX, YAF(I,J) )
ENDDO
ENDDO
C
WRITE(6,6200) XAMIN,XAMAX,YAMIN,YAMAX
CALL ZHFLSH(6)
C
C CHECK THAT THE INTERPOLATION IS 'SAFE',
C
IF (INT(XAMIN).LT.3 .OR. INT(XAMAX).GT.IWI+2 .OR.
+ INT(YAMIN).LT.3 .OR. INT(YAMAX).GT.JWI+2 ) THEN
WRITE(6,9150)
CALL ZHFLSH(6)
STOP
ENDIF
C
C PROCESS ALL THE CLIM RECORDS.
C
DO J= 1,JDM
DO I= 1,IDM
RT(I,J) = ZERO
ENDDO
ENDDO
C
DO 810 KREC= 1,KWI
C
C READ THE INPUT CLIMS.
C
IF (ICTYPE.EQ.1) THEN
READ(71) RSEAIN
READ(72) TSEAIN
SSEAIN(:,:) = 0.0
ELSEIF (ICTYPE.EQ.2) THEN
READ(71) RSEAIN
TSEAIN(:,:) = 0.0
READ(73) SSEAIN
ELSEIF (ICTYPE.EQ.3) THEN
RSEAIN(:,:) = 0.0
READ(72) TSEAIN
READ(73) SSEAIN
ELSE
RSEAIN(:,:) = 0.0
TSEAIN(:,:) = 0.0
READ(73) SSEAIN
ENDIF
C
C COPY INTO THE (LARGER) INTERPOLATION ARRAYS.
C
DO 310 J= 1,JWI
DO 311 I= 1,IWI
TSEAI(I+2,J+2) = TSEAIN(I,J)
SSEAI(I+2,J+2) = SSEAIN(I,J)
RSEAI(I+2,J+2) = RSEAIN(I,J)
311 CONTINUE
310 CONTINUE
C
C FILL IN THE PADDING AREA AS NECESSARY.
C
IF (INT(XAMAX).GE.IWI+1) THEN
IF (IWIX.GT.IWI) THEN
DO 320 J= 3,JWI+2
TSEAI(IWI+3,J) = TSEAI(3,J)
TSEAI(IWI+4,J) = TSEAI(4,J)
SSEAI(IWI+3,J) = SSEAI(3,J)
SSEAI(IWI+4,J) = SSEAI(4,J)
RSEAI(IWI+3,J) = RSEAI(3,J)
RSEAI(IWI+4,J) = RSEAI(4,J)
320 CONTINUE
ELSE
DO 325 J= 3,JWI+2
TSEAI(IWI+3,J) = 2.0*TSEAI(IWI+2,J) - TSEAI(IWI+1,J)
TSEAI(IWI+4,J) = 3.0*TSEAI(IWI+2,J) - 2.0*TSEAI(IWI+1,J)
SSEAI(IWI+3,J) = 2.0*SSEAI(IWI+2,J) - SSEAI(IWI+1,J)
SSEAI(IWI+4,J) = 3.0*SSEAI(IWI+2,J) - 2.0*SSEAI(IWI+1,J)
RSEAI(IWI+3,J) = 2.0*RSEAI(IWI+2,J) - RSEAI(IWI+1,J)
RSEAI(IWI+4,J) = 3.0*RSEAI(IWI+2,J) - 2.0*RSEAI(IWI+1,J)
325 CONTINUE
ENDIF
ENDIF
IF (INT(XAMIN).LE.3) THEN
IF (IWIX.GT.IWI) THEN
DO 330 J= 3,JWI+2
TSEAI(1,J) = TSEAI(IWI+1,J)
TSEAI(2,J) = TSEAI(IWI+2,J)
SSEAI(1,J) = SSEAI(IWI+1,J)
SSEAI(2,J) = SSEAI(IWI+2,J)
RSEAI(1,J) = RSEAI(IWI+1,J)
RSEAI(2,J) = RSEAI(IWI+2,J)
330 CONTINUE
ELSE
DO 335 J= 3,JWI+2
TSEAI(1,J) = 3.0*TSEAI(3,J) - 2.0*TSEAI(4,J)
TSEAI(2,J) = 2.0*TSEAI(3,J) - TSEAI(4,J)
SSEAI(1,J) = 3.0*SSEAI(3,J) - 2.0*SSEAI(4,J)
SSEAI(2,J) = 2.0*SSEAI(3,J) - SSEAI(4,J)
RSEAI(1,J) = 3.0*RSEAI(3,J) - 2.0*RSEAI(4,J)
RSEAI(2,J) = 2.0*RSEAI(3,J) - RSEAI(4,J)
335 CONTINUE
ENDIF
ENDIF
IF (INT(YAMAX).GE.JWI+1) THEN
DO 340 I= 1,IWI+4
TSEAI(I,JWI+3) = 2.0*TSEAI(I,JWI+2) - TSEAI(I,JWI+1)
TSEAI(I,JWI+4) = 3.0*TSEAI(I,JWI+2) - 2.0*TSEAI(I,JWI+1)
SSEAI(I,JWI+3) = 2.0*SSEAI(I,JWI+2) - SSEAI(I,JWI+1)
SSEAI(I,JWI+4) = 3.0*SSEAI(I,JWI+2) - 2.0*SSEAI(I,JWI+1)
RSEAI(I,JWI+3) = 2.0*RSEAI(I,JWI+2) - RSEAI(I,JWI+1)
RSEAI(I,JWI+4) = 3.0*RSEAI(I,JWI+2) - 2.0*RSEAI(I,JWI+1)
340 CONTINUE
ENDIF
IF (INT(YAMIN).LE.3) THEN
DO 350 I= 1,IWI+4
TSEAI(I,1) = 3.0*TSEAI(I,3) - 2.0*TSEAI(I,4)
TSEAI(I,2) = 2.0*TSEAI(I,3) - TSEAI(I,4)
SSEAI(I,1) = 3.0*SSEAI(I,3) - 2.0*SSEAI(I,4)
SSEAI(I,2) = 2.0*SSEAI(I,3) - SSEAI(I,4)
RSEAI(I,1) = 3.0*RSEAI(I,3) - 2.0*RSEAI(I,4)
RSEAI(I,2) = 2.0*RSEAI(I,3) - RSEAI(I,4)
350 CONTINUE
ENDIF
C
C INTERPOLATE FROM NATIVE TO MODEL CLIM GRIDS.
C ALSO INFORCE A STABLE DENSITY PROFILE.
C
IF (IFRZ.EQ.0) THEN
C IGNORE ICE.
TFRZ = -HUGE(TFRZ)
ELSEIF (IFRZ.EQ.1) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT -1.8 DEGC.
TFRZ = -1.8
ENDIF
IF (ICTYPE.EQ.1) THEN
IF (INTERP.EQ.0) THEN
CALL LINEAR(TM,XAF,YAF,IDM,IDM,JDM,
+ TSEAI,IWI+4,IWI+4,JWI+4)
CALL LINEAR(RM,XAF,YAF,IDM,IDM,JDM,
+ RSEAI,IWI+4,IWI+4,JWI+4)
ELSE
CALL CUBSPL(TM,XAF,YAF,IDM,IDM,JDM,
+ TSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
CALL CUBSPL(RM,XAF,YAF,IDM,IDM,JDM,
+ RSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
ENDIF
IF (KSIGMA.EQ.0) THEN
DO J= 1,JDM
DO I= 1,IDM
RM(I,J) = MAX( RM(I,J), RT(I,J) )
SM(I,J) = SOFSIG( R8(RM(I,J)), R8(TM(I,J)) )
RT(I,J) = RM(I,J)
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
RM(I,J) = SIG( R8(TM(I,J)), R8(SM(I,J)) )
RT(I,J) = RM(I,J)
ENDIF
ENDDO
ENDDO
ELSE
DO J= 1,JDM
DO I= 1,IDM
SM(I,J) = SOFSIG( R8(RM(I,J)), R8(TM(I,J)) )
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
ENDIF
ENDDO
ENDDO
CALL SIGMA2(RM,TM,SM,RT,IDM,JDM, ICTYPE)
ENDIF
ELSEIF (ICTYPE.EQ.2) THEN
IF (INTERP.EQ.0) THEN
CALL LINEAR(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4)
CALL LINEAR(RM,XAF,YAF,IDM,IDM,JDM,
+ RSEAI,IWI+4,IWI+4,JWI+4)
ELSE
CALL CUBSPL(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
CALL CUBSPL(RM,XAF,YAF,IDM,IDM,JDM,
+ RSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
ENDIF
IF (KSIGMA.EQ.0) THEN
DO J= 1,JDM
DO I= 1,IDM
RM(I,J) = MAX( RM(I,J), RT(I,J) )
TM(I,J) = TOFSIG( R8(RM(I,J)), R8(SM(I,J)) )
RT(I,J) = RM(I,J)
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
RM(I,J) = SIG( R8(TM(I,J)), R8(SM(I,J)) )
RT(I,J) = RM(I,J)
ENDIF
ENDDO
ENDDO
ELSE
DO J= 1,JDM
DO I= 1,IDM
TM(I,J) = TOFSIG( R8(RM(I,J)), R8(SM(I,J)) )
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
ENDIF
ENDDO
ENDDO
CALL SIGMA2(RM,TM,SM,RT,IDM,JDM, ICTYPE)
ENDIF
ELSEIF (ICTYPE.EQ.3) THEN
IF (INTERP.EQ.0) THEN
CALL LINEAR(TM,XAF,YAF,IDM,IDM,JDM,
+ TSEAI,IWI+4,IWI+4,JWI+4)
CALL LINEAR(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4)
ELSE
CALL CUBSPL(TM,XAF,YAF,IDM,IDM,JDM,
+ TSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
CALL CUBSPL(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
ENDIF
IF (KSIGMA.EQ.0) THEN
DO J= 1,JDM
DO I= 1,IDM
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
ENDIF
RM(I,J) = SIG( R8(TM(I,J)), R8(SM(I,J)) )
IF (RM(I,J).LT.RT(I,J)) THEN
RM(I,J) = RT(I,J)
* TM(I,J) = TOFSIG( R8(RM(I,J)), R8(SM(I,J)) )
SM(I,J) = SOFSIG( R8(RM(I,J)), R8(TM(I,J)) )
ENDIF
RT(I,J) = RM(I,J)
ENDDO
ENDDO
ELSE
DO J= 1,JDM
DO I= 1,IDM
IF (IFRZ.EQ.2) THEN
C ASSUME ICE FORMS (I.E. MIN SST) AT ACTUAL FREEZING POINT.
TFRZ = -0.055*SM(I,J)
ENDIF
IF (TM(I,J).LT.TFRZ) THEN !all layers
TM(I,J) = TFRZ
ENDIF
ENDDO
ENDDO
CALL SIGMA2(RM,TM,SM,RT,IDM,JDM, ICTYPE)
ENDIF
ELSEIF (ICTYPE.EQ.4) THEN
IF (INTERP.EQ.0) THEN
CALL LINEAR(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4)
ELSE
CALL CUBSPL(SM,XAF,YAF,IDM,IDM,JDM,
+ SSEAI,IWI+4,IWI+4,JWI+4, IBD, FXI,FYI,WQSEA3,WK)
ENDIF
TM(:,:) = 0.0
RM(:,:) = 0.0
ENDIF
C
C WRITE OUT STATISTICS.
C
CALL MINMAX(TM,IDM,JDM, XMIN,XMAX)
CALL AVERMS(TM,IDM,JDM, XAVE,XRMS)
WRITE(6,8100) 'TSEA', XMIN,XMAX,XAVE,XRMS
C
CALL MINMAX(SM,IDM,JDM, XMIN,XMAX)
CALL AVERMS(SM,IDM,JDM, XAVE,XRMS)
WRITE(6,8100) 'SSEA', XMIN,XMAX,XAVE,XRMS
C
CALL MINMAX(RM,IDM,JDM, XMIN,XMAX)
CALL AVERMS(RM,IDM,JDM, XAVE,XRMS)
WRITE(6,8100) 'RSEA', XMIN,XMAX,XAVE,XRMS
C
C DIAGNOSTIC PRINTOUT.
C
IF (MIN(ITEST,JTEST).GT.0) THEN
WRITE(6,*)
WRITE(6,'(A,2I5,I3,A,F8.2,A,3F6.2)')
+ 'I,J,K =',ITEST,JTEST,KREC,
+ ' ZLEV =',ZLEV(KREC),
+ ' R,T,S =',RM(ITEST,JTEST),
+ TM(ITEST,JTEST),
+ SM(ITEST,JTEST)
WRITE(6,*)
CALL ZHFLSH(6)
ENDIF
C
C WRITE OUT HYCOM CLIMS.
C
CALL ZAIOWR(TM,MSK,.FALSE., XMIN,XMAX, 10, .FALSE.)
WRITE(10,4102) 'potential temperature',ZLEV(KREC),XMIN,XMAX
C
CALL ZAIOWR(SM,MSK,.FALSE., XMIN,XMAX, 11, .FALSE.)
IF (ICTYPE.NE.4) THEN
WRITE(11,4102) ' salinity',ZLEV(KREC),XMIN,XMAX
ELSE
WRITE(11,4102) 'salinity lnd/sea mask',ZLEV(KREC),XMIN,XMAX
ENDIF
C
CALL ZAIOWR(RM,MSK,.FALSE., XMIN,XMAX, 12, .FALSE.)
IF (KSIGMA.EQ.0) THEN
WRITE(12,4102) ' sigma-0',ZLEV(KREC),XMIN,XMAX
ELSE
WRITE(12,4102) ' sigma-2',ZLEV(KREC),XMIN,XMAX
ENDIF
C
WRITE(6,6300) KREC,ZLEV(KREC)
CALL ZHFLSH(6)
810 CONTINUE
C
CALL ZAIOCL(10)
CLOSE( UNIT=10)
CALL ZAIOCL(11)
CLOSE( UNIT=11)
CALL ZAIOCL(12)
CLOSE( UNIT=12)
C
C SUMMARY.
C
WRITE(6,6400) KWI
CALL ZHFLSH(6)
STOP
C
4101 FORMAT(A79)
4102 FORMAT(A,': depth,range = ',F7.1,1P2E16.7)
6000 FORMAT(1X,A,2X,A40 //)
6200 FORMAT(/ 1X,'MIN,MAX I COORDS = ',F8.2,',',F8.2
+ / 1X,'MIN,MAX J COORDS = ',F8.2,',',F8.2 /)
6300 FORMAT(10X,'WRITING CLIM RECORD',I3,' ZLEV =',F7.1 /)
6400 FORMAT(I5,' LEVEL CLIMATOLOGY COMPLETED.')
8100 FORMAT(1X,A,': MIN=',F13.8,' MAX=',F13.8,
+ ' AVE=',F13.8,' RMS=',F13.8)
9000 FORMAT(// 20X,'***** ERROR ON UNIT -',I3,
+ ' INPUT DOES NOT AGREE WITH PARAMETERS *****' //
+ 1X,'IWI,JWI,KWI = ',I5, I10, I4 /
+ 1X,'XFIN,YFIN = ',F8.2,F10.2 /
+ 1X,'DXIN,DYIN = ',F9.3, F9.3 //)
9050 FORMAT(// 20X,'********** ERROR - ',
+ 'INPUT IS GLOBAL AND IWI*DXIN IS NOT 360 DEGREES ****' //)
9150 FORMAT(// 20X,'********** ERROR - ',
+ 'THE OUTPUT GRID IS NOT INSIDE THE INPUT GRID **********' //)
C END OF PROGRAM WNDINT.
END
SUBROUTINE SIGMA2(RSEA,TSEA,SSEA,RTOP,IW,JW, ICTYPE)
IMPLICIT NONE
C
INTEGER IW,JW,ICTYPE
REAL*4 TSEA(IW,JW),SSEA(IW,JW),RSEA(IW,JW),RTOP(IW,JW)
C
C CONVERT FROM SIGMA-0 TO SIGMA-2.
C
INTEGER I,J
C
C STATEMENT FUNCTIONS.
C
REAL*8 DZERO,DTHIRD
PARAMETER (DZERO=0.D0,DTHIRD=1.D0/3.D0)
C
REAL*8 C1,C2,C3,C4,C5,C6,C7
C --- coefficients for sigma-2 (based on Brydon & Sun fit)
PARAMETER (C1= 9.77093e+00, C2=-2.26493e-02, C3= 7.89879E-01,
. C4=-6.43205E-03, C5=-2.62983E-03,
. C6= 2.75835E-05, C7= 3.15235E-05)
C
REAL*4 R4
REAL*8 R8
REAL*8 R,S,T
REAL*8 A0,A1,A2,CUBQ,CUBR,CUBAN,CUBRL,CUBIM,TOFSIG,SOFSIG,SIG
C
C --- auxiliary statement for real*4 to real*8 conversion
R8(R4)=R4
C
C --- auxiliary statements for finding root of 3rd degree polynomial
A0(S)=(C1+C3*S)/C6
A1(S)=(C2+C5*S)/C6
A2(S)=(C4+C7*S)/C6
CUBQ(S)=DTHIRD*A1(S)-(DTHIRD*A2(S))**2
CUBR(R,S)=DTHIRD*(0.5D0*A1(S)*A2(S)-1.5D0*(A0(S)-R/C6))
. -(DTHIRD*A2(S))**3
C --- if q**3+r**2>0, water is too dense to yield real root at given
C --- salinitiy. setting q**3+r**2=0 in that case is equivalent to
C --- lowering sigma until a double real root is obtained.
CUBAN(R,S)=DTHIRD*ATAN2(SQRT(MAX(DZERO,
. -(CUBQ(S)**3+CUBR(R,S)**2))),CUBR(R,S))
CUBRL(R,S)=SQRT(-CUBQ(S))*COS(CUBAN(R,S))
CUBIM(R,S)=SQRT(-CUBQ(S))*SIN(CUBAN(R,S))
C
C --- temp (deg c) as a function of sigma and salinity (mil)
TOFSIG(R,S)=-CUBRL(R,S)+SQRT(3.)*CUBIM(R,S)-DTHIRD*A2(S)
C
C --- salinity (mil) as a function of sigma and temperature (deg c)
SOFSIG(R,T)=(R-C1-T*(C2+T*(C4+C6*T)))/(C3+T*(C5+C7*T))
C
C --- sigma-theta as a function of temp (deg c) and salinity (mil)
C --- (friedrich-levitus 3rd degree polynomial fit)
SIG(T,S)=(C1+C3*S+T*(C2+C5*S+T*(C4+C7*S+C6*T)))
C
C T AND S TO SIG-2,
C INFORCE STABLE PROFILE,
C MAKE T AND S COMPATIBLE WITH NEW PROFILE,
C REMEMBER NEW DENSITY.
C
IF (ICTYPE.EQ.1) THEN
DO J= 1,JW
DO I= 1,IW
RSEA(I,J) = SIG( R8(TSEA(I,J)), R8(SSEA(I,J)) )
RSEA(I,J) = MAX( RSEA(I,J), RTOP(I,J) )
SSEA(I,J) = SOFSIG( R8(RSEA(I,J)), R8(TSEA(I,J)) )
RTOP(I,J) = RSEA(I,J)
ENDDO
ENDDO
ELSEIF (ICTYPE.EQ.2) THEN
DO J= 1,JW
DO I= 1,IW
RSEA(I,J) = SIG( R8(TSEA(I,J)), R8(SSEA(I,J)) )
RSEA(I,J) = MAX( RSEA(I,J), RTOP(I,J) )
TSEA(I,J) = TOFSIG( R8(RSEA(I,J)), R8(SSEA(I,J)) )
RTOP(I,J) = RSEA(I,J)
ENDDO
ENDDO
ELSEIF (ICTYPE.EQ.3) THEN
DO J= 1,JW
DO I= 1,IW
RSEA(I,J) = SIG( R8(TSEA(I,J)), R8(SSEA(I,J)) )
IF (RSEA(I,J).LT.RTOP(I,J)) THEN
RSEA(I,J) = RTOP(I,J)
* TSEA(I,J) = TOFSIG( R8(RSEA(I,J)), R8(SSEA(I,J)) )
SSEA(I,J) = SOFSIG( R8(RSEA(I,J)), R8(TSEA(I,J)) )
ENDIF
RTOP(I,J) = RSEA(I,J)
ENDDO
ENDDO
ENDIF
RETURN
END