-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathtrain_clm.py
143 lines (120 loc) · 5.62 KB
/
train_clm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import transformers
os.environ["WANDB_DISABLED"] = "true"
@dataclass
class PretrainConfig:
model_name_or_path: Optional[str] = field(metadata={"help": "Path to pretrained model checkpoint"})
dataset_name: Optional[str] = field(default=None, metadata={"help": "Huggingface dataset name"})
train_file_path: Optional[str] = field(default=None, metadata={"help": "Path to train data file/directory"})
validate_file_path: Optional[str] = field(default=None, metadata={"help": "Path to validation data file/directory"})
max_length: int = field(default=1024, metadata={"help": "Max length of input"})
text_key_name: Optional[str] = field(default="content",
metadata={"help": "key to text field name in train and validation file"})
preprocess_num_workers: int = field(default=8,
metadata={"help": "The number of processes to use for the preprocessing."})
def check_file_exist(path: str):
if not os.path.exists(path):
raise ValueError(f"Path: {path} not exists!")
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
def compute_metrics(eval_preds):
preds, labels = eval_preds
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=preds, references=labels)
def main():
transformers.set_seed(1234)
parser = transformers.HfArgumentParser((PretrainConfig, transformers.TrainingArguments))
pretrain_config, training_args = parser.parse_args_into_dataclasses()
# check file existence
if pretrain_config.dataset_name is None and pretrain_config.train_file_path is None:
raise ValueError(f"One of --dataset_name or --train_file_path must be set")
if pretrain_config.train_file_path:
check_file_exist(pretrain_config.train_file_path)
if pretrain_config.validate_file_path:
check_file_exist(pretrain_config.validate_file_path)
# load model, tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(pretrain_config.model_name_or_path, padding_side='right',
trunction_side="right",
max_length=pretrain_config.max_length)
model = transformers.AutoModelForCausalLM.from_pretrained(pretrain_config.model_name_or_path)
if pretrain_config.dataset_name:
ds = datasets.load_dataset(pretrain_config.dataset_name)
train_ds, validation_ds = ds['train'], ds['validation']
else:
# Split 20% of train data as validation data
if not pretrain_config.validate_file_path:
train_ds, validation_ds = datasets.load_dataset('json', data_files=pretrain_config.train_file_path,
split=['train[:80%]', 'train[80%:]'])
else:
train_ds = datasets.load_dataset("json", data_files=pretrain_config.train_file_path)
validation_ds = datasets.load_dataset("json", data_files=pretrain_config.validate_file_path)
raw_datasets = datasets.DatasetDict({"train": train_ds, "validation": validation_ds})
column_names = raw_datasets["train"].column_names if training_args.do_train else raw_datasets[
"validation"].column_names
def process_pretrain(batch):
tokenized = tokenizer(batch[pretrain_config.text_key_name])
for k in tokenized.keys():
batch[k] = [e[:pretrain_config.max_length] for e in tokenized[k]]
batch['labels'] = batch['input_ids'].copy()
return batch
with training_args.main_process_first(desc="Process pretrain dataset"):
clm_dataset = raw_datasets.map(
process_pretrain,
batched=True,
batch_size=4,
num_proc=pretrain_config.preprocess_num_workers,
remove_columns=column_names,
desc="Process pretrain dataset"
)
trainer = transformers.Trainer(
model=model,
args=training_args,
train_dataset=clm_dataset["train"],
eval_dataset=clm_dataset["validation"],
tokenizer=tokenizer, # trainer need tokenizer.pad_token_id,
data_collator=transformers.DataCollatorForTokenClassification(tokenizer=tokenizer, padding="longest",
max_length=pretrain_config.max_length,
label_pad_token_id=-100),
compute_metrics=compute_metrics if training_args.do_eval else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# trigger Training
trainer.train()
trainer.save_model()
trainer.save_state()
if __name__ == '__main__':
main()
"""
deepspeed \
--include="localhost:0,1,2,3" \
./train_clm.py \
--deepspeed ./ds_config/ds_config_zero3.json \
--model_name_or_path ./tigerbot_560m \
--dataset_name TigerResearch/dev_pretrain \
--do_train \
--output_dir ./ckpt-clm \
--overwrite_output_dir \
--preprocess_num_workers 8 \
--num_train_epochs 5 \
--learning_rate 1e-5 \
--evaluation_strategy steps \
--eval_steps 10 \
--bf16 True \
--save_strategy steps \
--save_steps 10 \
--save_total_limit 2 \
--logging_steps 10 \
--tf32 True \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2
"""