This repo is based on Focal Loss for Dense Object Detection, and it is completed by YangXue.
We also recommend a tensorflow-based rotation detection benchmark, which is led by YangXue.
Techniques:
- ResNet, MobileNetV2, EfficientNet
- RetinaNet-H, RetinaNet-R
- R3Det: Feature Refinement Module (FRM)
- Circular Smooth Label (CSL)
- Densely Coded Label (DCL)
- Dataset support: DOTA, HRSC2016, ICDAR2015, ICDAR2017 MLT, UCAS-AOD, FDDB, OHD-SJTU, SSDD++
Model | Backbone | Training data | Val data | mAP | Model Link | Anchor | Angle Pred. | Reg. Loss | Angle Range | lr schd | Data Augmentation | GPU | Image/GPU | Configs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RetinaNet-H | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 64.17 | Baidu Drive (j5l0) | H | Reg. | smooth L1 | 180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_v15.py |
RetinaNet-CSL | ResNet50_v1 600->800 | DOTA1.0 trainval | DOTA1.0 test | 65.69 | Baidu Drive (kgr3) | H | Cls.: Gaussian (r=6, w=1) | smooth L1 | 180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_v1.py |
RetinaNet-DCL | ResNet50_v1 600->800 | DOTA1.0 trainval | DOTA1.0 test | 67.39 | Baidu Drive (p9tu) | H | Cls.: BCL (w=180/256) | smooth L1 | 180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_dcl_v5.py |
RetinaNet-DCL | ResNet50_v1 600->800 | DOTA1.0 trainval | DOTA1.0 test | 67.02 | Baidu Drive (mcfg) | H | Cls.: GCL (w=180/256) | smooth L1 | 180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_dcl_v10.py |
RetinaNet-DCL | ResNet152_v1 600->MS | DOTA1.0 trainval | DOTA1.0 test | 73.88 | Baidu Drive (a7du) | H | Cls.: BCL (w=180/256) | smooth L1 | 180 | 2x | √ | 3X GeForce RTX 2080 Ti | 1 | cfgs_res152_dota_dcl_v1.py |
Refine-DCL | ResNet50_v1 600->800 | DOTA1.0 trainval | DOTA1.0 test | 70.63 | Baidu Drive (6bv5) | H->R | Cls.: BCL (w=180/256) | iou-smooth L1 | 90->180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_refine_dcl_v1.py |
R3Det-DCL | ResNet50_v1 600->800 | DOTA1.0 trainval | DOTA1.0 test | 71.21 | Baidu Drive (jueq) | H->R | Cls.: BCL (w=180/256) | iou-smooth L1 | 90->180 | 2x | × | 3X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_r3det_dcl_v1.py |
R3Det-DCL | ResNet152_v1 600->MS (+Flip) | DOTA1.0 trainval | DOTA1.0 test | 76.70 (+0.27) | Baidu Drive (2iov) | H->R | Cls.: BCL (w=180/256) | iou-smooth L1 | 90->180 | 4x | √ | 4X GeForce RTX 2080 Ti | 1 | cfgs_res152_dota_r3det_dcl_v1.py |
docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow-gpu 1.13
1、Please download resnet50_v1, resnet101_v1, resnet152_v1, efficientnet, mobilenet_v2 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone (resnet_v1d), refer to gluon2TF.
- Baidu Drive, password: 5ht9.
- Google Drive
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
2、Make tfrecord
For DOTA dataset:
cd $PATH_ROOT/data/io/DOTA
python data_crop.py
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
3、Multi-gpu train
cd $PATH_ROOT/tools
python multi_gpu_train_dcl.py
cd $PATH_ROOT/tools
python test_dota_dcl_ms.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
-ms (multi-scale testing, optional)
-s (visualization, optional)
Notice: In order to set the breakpoint conveniently, the read and write mode of the file is' a+'. If the model of the same #VERSION needs to be tested again, the original test results need to be deleted.
cd $PATH_ROOT/tsne
python feature_extract_dcl.py
python tsne.py
cd $PATH_ROOT/tsne/dcl_log
tensorboard --logdir=.
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
If this is useful for your research, please consider cite.
@article{yang2020dense,
title={Dense Label Encoding for Boundary Discontinuity Free Rotation Detection},
author={Yang, Xue and Hou, Liping and Zhou, Yue and Wang, Wentao and Yan, Junchi},
journal={arXiv preprint arXiv:2011.09670},
year={2020}
}
@article{yang2020arbitrary,
title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
author={Yang, Xue and Yan, Junchi},
journal={European Conference on Computer Vision (ECCV)},
year={2020}
organization={Springer}
}
@article{yang2019r3det,
title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
author={Yang, Xue and Yan, Junchi and Feng, Ziming and He, Tao},
journal={arXiv preprint arXiv:1908.05612},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={3974--3983},
year={2018}
}
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet