Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chinese Remainder Theorem | Diophantine Equation | Modular Division #1248

Merged
merged 12 commits into from
Oct 6, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions blockchain/chinese_remainder_theorem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Chinese Remainder Theorem:
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )

# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n,
# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab)

# Algorithm :

# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
# 2. Take n = ra*by + rb*ax


# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)

>>> extended_euclid(7, 5)
(-2, 3)

"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)


# Uses ExtendedEuclid to find inverses
def chinese_remainder_theorem(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem(5,1,7,3)
31

Explanation : 31 is the smallest number such that
(i) When we divide it by 5, we get remainder 1
(ii) When we divide it by 7, we get remainder 3

>>> chinese_remainder_theorem(6,1,4,3)
14

"""
(x, y) = extended_euclid(n1, n2)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return ((n % m + m) % m)


# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------

# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3

>>> invert_modulo(8,7)
1

"""
(b, x) = extended_euclid(a, n)
if b < 0:
b = (b % n + n) % n
return b


# Same a above using InvertingModulo
def chinese_remainder_theorem2(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem2(5,1,7,3)
31

>>> chinese_remainder_theorem2(6,1,4,3)
14

"""
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return (n % m + m) % m


# import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)
124 changes: 124 additions & 0 deletions blockchain/diophantine_equation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c.

# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )


def diophantine(a, b, c):
"""
>>> diophantine(10,6,14)
(-7.0, 14.0)

>>> diophantine(391,299,-69)
(9.0, -12.0)

But above equation has one more solution i.e., x = -4, y = 5.
That's why we need diophantine all solution function.

"""

assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d
return (r * x, r * y)


# Lemma : if n|ab and gcd(a,n) = 1, then n|b.

# Finding All solutions of Diophantine Equations:

# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c.
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.

# n is the number of solution you want, n = 2 by default

def diophantine_all_soln(a, b, c, n=2):
"""
>>> diophantine_all_soln(10, 6, 14)
-7.0 14.0
-4.0 9.0

>>> diophantine_all_soln(10, 6, 14, 4)
-7.0 14.0
-4.0 9.0
-1.0 4.0
2.0 -1.0

>>> diophantine_all_soln(391, 299, -69, n = 4)
9.0 -12.0
22.0 -29.0
35.0 -46.0
48.0 -63.0

"""
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d

for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y)


# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b

# Euclid's Algorithm

def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1

Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.

>>> greatest_common_divisor(121, 11)
11

"""
if a < b:
a, b = b, a

while a % b != 0:
a, b = b, a % b

return b


# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)


def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)

>>> extended_gcd(7, 5)
(1, -2, 3)

"""
assert a >= 0 and b >= 0

if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)

assert a % d == 0 and b % d == 0
assert d == a * x + b * y

return (d, x, y)


# import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='diophantine', verbose=True)
testmod(name='diophantine_all_soln', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)
149 changes: 149 additions & 0 deletions blockchain/modular_division.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
# Modular Division :
# An efficient algorithm for dividing b by a modulo n.

# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )

# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
# 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).

# Theorem:
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1


# This find x = b*a^(-1) mod n
# Uses ExtendedEuclid to find the inverse of a


def modular_division(a, b, n):
"""
>>> modular_division(4,8,5)
2

>>> modular_division(3,8,5)
1

>>> modular_division(4, 11, 5)
4

"""
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x


# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3

>>> invert_modulo(8,7)
1

"""
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b


# ------------------ Finding Modular division using invert_modulo -------------------

# This function used the above inversion of a to find x = (b*a^(-1))mod n
def modular_division2(a, b, n):
"""
>>> modular_division2(4,8,5)
2

>>> modular_division2(3,8,5)
1

>>> modular_division2(4, 11, 5)
4

"""
s = invert_modulo(a, n)
x = (b * s) % n
return x


# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)

def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)

>>> extended_gcd(7, 5)
(1, -2, 3)

** extended_gcd function is used when d = gcd(a,b) is required in output

"""
assert a >= 0 and b >= 0

if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)

assert a % d == 0 and b % d == 0
assert d == a * x + b * y

return (d, x, y)


# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)

>>> extended_euclid(7, 5)
(-2, 3)

"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)


# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm

def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1

Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.

>>> greatest_common_divisor(121, 11)
11

"""
if a < b:
a, b = b, a

while a % b != 0:
a, b = b, a % b

return b


# Import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='modular_division', verbose=True)
testmod(name='modular_division2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='extended_euclid', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)