Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added doctest, docstring and typehint for sigmoid_function & cost_function #10828

Merged
merged 8 commits into from
Oct 26, 2023
Prev Previous commit
Next Next commit
Made requested changes in logistic_regression.py
  • Loading branch information
Suyashd999 authored Oct 26, 2023
commit 4ef1ec81e76a912104af8600fed03b668ce27a35
35 changes: 15 additions & 20 deletions machine_learning/logistic_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
# classification problems


def sigmoid_function(z: np.ndarray) -> np.ndarray:
def sigmoid_function(z: float | np.ndarray) -> float | np.ndarray:
"""
Also known as Logistic Function.

Expand All @@ -46,23 +46,23 @@ def sigmoid_function(z: np.ndarray) -> np.ndarray:
Examples:
>>> sigmoid_function(4)
0.9820137900379085
>>> sigmoid_function(np.array([-3, 3]))
>>> sigmoid_function(np.array([-3,3]))
array([0.04742587, 0.95257413])
>>> sigmoid_function(np.array([-3, 3, 1]))
>>> sigmoid_function(np.array([-3,3,1]))
array([0.04742587, 0.95257413, 0.73105858])
>>> sigmoid_function(np.array([-0.01, -2, -1.9]))
>>> sigmoid_function(np.array([-0.01,-2,-1.9]))
array([0.49750002, 0.11920292, 0.13010847])
>>> sigmoid_function(np.array([-1.3, 5.3, 12]))
>>> sigmoid_function(np.array([-1.3,5.3,12]))
array([0.21416502, 0.9950332 , 0.99999386])
>>> sigmoid_function(np.array([0.01, 0.02, 4.1]))
>>> sigmoid_function(np.array([0.01,0.02,4.1]))
array([0.50249998, 0.50499983, 0.9836975 ])
>>> sigmoid_function(np.array([0.8]))
array([0.68997448])
"""
return 1 / (1 + np.exp(-z))


def cost_function(h: np.ndarray, y: np.ndarray) -> int:
def cost_function(h: np.ndarray, y: np.ndarray) -> float:
"""
Suyashd999 marked this conversation as resolved.
Show resolved Hide resolved
Cost function quantifies the error between predicted and expected values.
The cost function used in Logistic Regression is called Log Loss
Expand All @@ -83,22 +83,17 @@ def cost_function(h: np.ndarray, y: np.ndarray) -> int:
@param y: the actual binary label associated with input example 'x'

Examples:
>>> estimations = np.array([
... sigmoid_function(0.3), sigmoid_function(-4.3), sigmoid_function(8.1)
... ])
>>> cost_function(h=estimations, y=np.array([1, 0, 1]))
>>> estimations = sigmoid_function(np.array([0.3,-4.3,8.1]))
>>> cost_function(h=estimations,y=np.array([1,0,1]))
0.18937868932131605
>>> estimations = np.array([
... sigmoid_function(4), sigmoid_function(3), sigmoid_function(1)
... ])
>>> cost_function(h=estimations, y=np.array([1, 0, 0]))
>>> estimations = sigmoid_function(np.array([4,3,1]))
>>> cost_function(h=estimations,y=np.array([1,0,0]))
1.459999655669926
>>> estimations = np.array([
... sigmoid_function(4), sigmoid_function(-3), sigmoid_function(-1)
... ])
>>> cost_function(h=estimations, y=np.array([1, 0, 0]))
>>> estimations = sigmoid_function(np.array([4,-3,-1]))
>>> cost_function(h=estimations,y=np.array([1,0,0]))
0.1266663223365915
>>> cost_function(h=np.array([sigmoid_function(0)]), y=np.array([1]))
>>> estimations = sigmoid_function(0)
>>> cost_function(h=estimations,y=np.array([1]))
0.6931471805599453

References:
Expand Down