-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathpollard.go
45 lines (41 loc) · 1.34 KB
/
pollard.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// pollard.go
// description: Pollard's rho algorithm
// details:
// implementation of Pollard's rho algorithm for integer factorization-[Pollard's rho algorithm](https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm)
// time complexity: O(n^(1/4))
// space complexity: O(1)
// author(s) [red_byte](https://github.com/i-redbyte)
// see pollard_test.go
package math
import (
"errors"
"math/big"
)
// DefaultPolynomial is the commonly used polynomial g(x) = (x^2 + 1) mod n
func DefaultPolynomial(n *big.Int) func(*big.Int) *big.Int {
bigOne := big.NewInt(1)
bigTwo := big.NewInt(2)
return func(x *big.Int) *big.Int {
xSquared := new(big.Int).Exp(x, bigTwo, n) // see: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Core_ideas
xSquared.Add(xSquared, bigOne)
xSquared.Mod(xSquared, n)
return xSquared
}
}
// PollardsRhoFactorization is an implementation of Pollard's rho factorization algorithm
// using the default parameters x = y = 2
func PollardsRhoFactorization(n *big.Int, f func(n *big.Int) func(x *big.Int) *big.Int) (*big.Int, error) {
x, y, d := big.NewInt(2), big.NewInt(2), big.NewInt(1)
bigOne := big.NewInt(1)
g := f(n)
for d.Cmp(bigOne) == 0 {
x = g(x)
y = g(g(y))
sub := new(big.Int).Sub(x, y)
d.GCD(nil, nil, sub.Abs(sub), n)
}
if d.Cmp(n) == 0 {
return nil, errors.New("factorization failed")
}
return d, nil
}