-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
71 lines (57 loc) · 2.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from model import MiniResNet
def train_model(epochs=1, batch_size=128, learning_rate=0.01):
# Data augmentation and normalization
transform = transforms.Compose([
transforms.RandomAffine(degrees=5, translate=(0.1, 0.1)),
transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# Load MNIST dataset
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MiniResNet().to(device)
# Print model parameters
print(f"Total parameters: {model.count_parameters():,}")
# Cosine annealing scheduler for better convergence
optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=learning_rate,
epochs=epochs,
steps_per_epoch=len(train_loader),
pct_start=0.2,
)
criterion = nn.CrossEntropyLoss()
model.train()
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
if batch_idx % 100 == 0:
print(f'Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\t'
f'Loss: {running_loss/(batch_idx+1):.6f}\t'
f'Accuracy: {100.*correct/total:.2f}%')
print(f'Final Accuracy: {100.*correct/total:.2f}%')
return model
if __name__ == '__main__':
model = train_model()