From f3c3d2ce5d85ba77336a9d0a87c6a446732cdda6 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Tue, 8 Jun 2021 10:22:10 +0200 Subject: [PATCH] Merge `develop` branch into `master` (#3518) * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * update ci-testing.yml (#3322) * update ci-testing.yml * update greetings.yml * bring back os matrix * Enable direct `--weights URL` definition (#3373) * Enable direct `--weights URL` definition @KalenMike this PR will enable direct --weights URL definition. Example use case: ``` python train.py --weights https://storage.googleapis.com/bucket/dir/model.pt ``` * cleanup * bug fixes * weights = attempt_download(weights) * Update experimental.py * Update hubconf.py * return bug fix * comment mirror * min_bytes * Update tutorial.ipynb (#3368) add Open in Kaggle badge * `cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379) * Update datasets.py * comment Co-authored-by: Glenn Jocher * COCO evolution fix (#3388) * COCO evolution fix * cleanup * update print * print fix * Create `is_pip()` function (#3391) Returns `True` if file is part of pip package. Useful for contextual behavior modification. ```python def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).absolute().parts ``` * Revert "`cv2.imread(img, -1)` for IMREAD_UNCHANGED (#3379)" (#3395) This reverts commit 21a9607e00f1365b21d8c4bd81bdbf5fc0efea24. * Update FLOPs description (#3422) * Update README.md * Changing FLOPS to FLOPs. Co-authored-by: BuildTools * Parse URL authentication (#3424) * Parse URL authentication * urllib.parse.unquote() * improved error handling * improved error handling * remove %3F * update check_file() * Add FLOPs title to table (#3453) * Suppress jit trace warning + graph once (#3454) * Suppress jit trace warning + graph once Suppress harmless jit trace warning on TensorBoard add_graph call. Also fix multiple add_graph() calls bug, now only on batch 0. * Update train.py * Update MixUp augmentation `alpha=beta=32.0` (#3455) Per VOC empirical results https://github.com/ultralytics/yolov5/issues/3380#issuecomment-853001307 by @developer0hye * Add `timeout()` class (#3460) * Add `timeout()` class * rearrange order * Faster HSV augmentation (#3462) remove datatype conversion process that can be skipped * Add `check_git_status()` 5 second timeout (#3464) * Add check_git_status() 5 second timeout This should prevent the SSH Git bug that we were discussing @KalenMike * cleanup * replace timeout with check_output built-in timeout * Improved `check_requirements()` offline-handling (#3466) Improve robustness of `check_requirements()` function to offline environments (do not attempt pip installs when offline). * Add `output_names` argument for ONNX export with dynamic axes (#3456) * Add output names & dynamic axes for onnx export Add output_names and dynamic_axes names for all outputs in torch.onnx.export. The first four outputs of the model will have names output0, output1, output2, output3 * use first output only + cleanup Co-authored-by: Samridha Shrestha Co-authored-by: Glenn Jocher * Revert FP16 `test.py` and `detect.py` inference to FP32 default (#3423) * fixed inference bug ,while use half precision * replace --use-half with --half * replace space and PEP8 in detect.py * PEP8 detect.py * update --half help comment * Update test.py * revert space Co-authored-by: Glenn Jocher * Add additional links/resources to stale.yml message (#3467) * Update stale.yml * cleanup * Update stale.yml * reformat * Update stale.yml HUB URL (#3468) * Stale `github.actor` bug fix (#3483) * Explicit `model.eval()` call `if opt.train=False` (#3475) * call model.eval() when opt.train is False call model.eval() when opt.train is False * single-line if statement * cleanup Co-authored-by: Glenn Jocher * check_requirements() exclude `opencv-python` (#3495) Fix for 3rd party or contrib versions of installed OpenCV as in https://github.com/ultralytics/yolov5/issues/3494. * Earlier `assert` for cpu and half option (#3508) * early assert for cpu and half option early assert for cpu and half option * Modified comment Modified comment * Update tutorial.ipynb (#3510) * Reduce test.py results spacing (#3511) * Update README.md (#3512) * Update README.md Minor modifications * 850 width * Update greetings.yml revert greeting change as PRs will now merge to master. Co-authored-by: Piotr Skalski Co-authored-by: SkalskiP Co-authored-by: Peretz Cohen Co-authored-by: tudoulei <34886368+tudoulei@users.noreply.github.com> Co-authored-by: chocosaj Co-authored-by: BuildTools Co-authored-by: Yonghye Kwon Co-authored-by: Sam_S Co-authored-by: Samridha Shrestha Co-authored-by: edificewang <609552430@qq.com> --- .github/workflows/ci-testing.yml | 6 +-- .github/workflows/stale.yml | 22 +++++++++- README.md | 26 ++++++------ detect.py | 3 +- hubconf.py | 3 +- models/experimental.py | 3 +- models/export.py | 18 ++++---- models/yolo.py | 6 +-- requirements.txt | 2 +- test.py | 6 ++- train.py | 72 ++++++++++++++++---------------- tutorial.ipynb | 13 +++--- utils/datasets.py | 6 +-- utils/general.py | 54 ++++++++++++++++++------ utils/google_utils.py | 58 +++++++++++++++---------- utils/torch_utils.py | 12 +++--- 16 files changed, 187 insertions(+), 123 deletions(-) diff --git a/.github/workflows/ci-testing.yml b/.github/workflows/ci-testing.yml index df508474a955..bb8b173cdb31 100644 --- a/.github/workflows/ci-testing.yml +++ b/.github/workflows/ci-testing.yml @@ -2,12 +2,10 @@ name: CI CPU testing on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows push: - branches: [ master ] + branches: [ master, develop ] pull_request: # The branches below must be a subset of the branches above - branches: [ master ] - schedule: - - cron: '0 0 * * *' # Runs at 00:00 UTC every day + branches: [ master, develop ] jobs: cpu-tests: diff --git a/.github/workflows/stale.yml b/.github/workflows/stale.yml index 0a094e237b34..a81e4007cffb 100644 --- a/.github/workflows/stale.yml +++ b/.github/workflows/stale.yml @@ -10,8 +10,26 @@ jobs: - uses: actions/stale@v3 with: repo-token: ${{ secrets.GITHUB_TOKEN }} - stale-issue-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.' - stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.' + stale-issue-message: | + 👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. + + Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources: + - **Wiki** – https://github.com/ultralytics/yolov5/wiki + - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials + - **Docs** – https://docs.ultralytics.com + + Access additional [Ultralytics](https://ultralytics.com) ⚡ resources: + - **Ultralytics HUB** – https://ultralytics.com/pricing + - **Vision API** – https://ultralytics.com/yolov5 + - **About Us** – https://ultralytics.com/about + - **Join Our Team** – https://ultralytics.com/work + - **Contact Us** – https://ultralytics.com/contact + + Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed! + + Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! + + stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.' days-before-stale: 30 days-before-close: 5 exempt-issue-labels: 'documentation,tutorial' diff --git a/README.md b/README.md index a638657b313b..3a785cc85003 100755 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ - +   CI CPU testing @@ -30,19 +30,19 @@ This repository represents Ultralytics open-source research into future object d [assets]: https://github.com/ultralytics/yolov5/releases -Model |size
(pixels) |mAPval
0.5:0.95 |mAPtest
0.5:0.95 |mAPval
0.5 |Speed
V100 (ms) | |params
(M) |FLOPS
640 (B) ---- |--- |--- |--- |--- |--- |---|--- |--- -[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0 -[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3 -[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4 -[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8 +|Model |size
(pixels) |mAPval
0.5:0.95 |mAPtest
0.5:0.95 |mAPval
0.5 |Speed
V100 (ms) | |params
(M) |FLOPs
640 (B) +|--- |--- |--- |--- |--- |--- |---|--- |--- +|[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0 +|[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3 +|[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4 +|[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8 | | | | | | || | -[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4 -[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4 -[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7 -[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9 +|[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4 +|[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4 +|[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7 +|[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9 | | | | | | || | -[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |- +|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
Table Notes (click to expand) @@ -112,7 +112,7 @@ Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, devi YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB) Fusing layers... -Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS +Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPs image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s) image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s) Results saved to runs/detect/exp2 diff --git a/detect.py b/detect.py index c6b76d981541..aba87687e666 100644 --- a/detect.py +++ b/detect.py @@ -28,7 +28,7 @@ def detect(opt): # Initialize set_logging() device = select_device(opt.device) - half = device.type != 'cpu' # half precision only supported on CUDA + half = opt.half and device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model @@ -172,6 +172,7 @@ def detect(opt): parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') + parser.add_argument('--half', type=bool, default=False, help='use FP16 half-precision inference') opt = parser.parse_args() print(opt) check_requirements(exclude=('tensorboard', 'pycocotools', 'thop')) diff --git a/hubconf.py b/hubconf.py index a52aae9fd1b7..bedbee18f87f 100644 --- a/hubconf.py +++ b/hubconf.py @@ -42,8 +42,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) # create model if pretrained: - attempt_download(fname) # download if not found locally - ckpt = torch.load(fname, map_location=torch.device('cpu')) # load + ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu')) # load msd = model.state_dict() # model state_dict csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter diff --git a/models/experimental.py b/models/experimental.py index afa787907104..d316b18373c3 100644 --- a/models/experimental.py +++ b/models/experimental.py @@ -116,8 +116,7 @@ def attempt_load(weights, map_location=None, inplace=True): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: - attempt_download(w) - ckpt = torch.load(w, map_location=map_location) # load + ckpt = torch.load(attempt_download(w), map_location=map_location) # load model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model # Compatibility updates diff --git a/models/export.py b/models/export.py index 0d1147938e37..c03770178829 100644 --- a/models/export.py +++ b/models/export.py @@ -44,22 +44,19 @@ # Load PyTorch model device = select_device(opt.device) + assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' model = attempt_load(opt.weights, map_location=device) # load FP32 model labels = model.names - # Checks + # Input gs = int(max(model.stride)) # grid size (max stride) opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples - assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' - - # Input img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection # Update model if opt.half: img, model = img.half(), model.half() # to FP16 - if opt.train: - model.train() # training mode (no grid construction in Detect layer) + model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if isinstance(m, models.common.Conv): # assign export-friendly activations @@ -96,11 +93,14 @@ print(f'{prefix} starting export with onnx {onnx.__version__}...') f = opt.weights.replace('.pt', '.onnx') # filename - torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'], + torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not opt.train, - dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) - 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) + input_names=['images'], + output_names=['output'], + dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) + 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + } if opt.dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model diff --git a/models/yolo.py b/models/yolo.py index 2844cd0410e0..1a7be913023c 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -21,7 +21,7 @@ select_device, copy_attr try: - import thop # for FLOPS computation + import thop # for FLOPs computation except ImportError: thop = None @@ -140,13 +140,13 @@ def forward_once(self, x, profile=False): x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: - o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS + o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_synchronized() for _ in range(10): _ = m(x) dt.append((time_synchronized() - t) * 100) if m == self.model[0]: - logger.info(f"{'time (ms)':>10s} {'GFLOPS':>10s} {'params':>10s} {'module'}") + logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') x = m(x) # run diff --git a/requirements.txt b/requirements.txt index 1c07c651150e..a20fb6ad0ea5 100755 --- a/requirements.txt +++ b/requirements.txt @@ -27,4 +27,4 @@ pandas # extras -------------------------------------- # Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172 pycocotools>=2.0 # COCO mAP -thop # FLOPS computation +thop # FLOPs computation diff --git a/test.py b/test.py index 0716c5d8b93c..12141f71c2c1 100644 --- a/test.py +++ b/test.py @@ -95,7 +95,7 @@ def test(data, confusion_matrix = ConfusionMatrix(nc=nc) names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} coco91class = coco80_to_coco91_class() - s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') + s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] @@ -228,7 +228,7 @@ def test(data, nt = torch.zeros(1) # Print results - pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format + pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class @@ -306,6 +306,7 @@ def test(data, parser.add_argument('--project', default='runs/test', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', type=bool, default=False, help='use FP16 half-precision inference') opt = parser.parse_args() opt.save_json |= opt.data.endswith('coco.yaml') opt.data = check_file(opt.data) # check file @@ -326,6 +327,7 @@ def test(data, save_txt=opt.save_txt | opt.save_hybrid, save_hybrid=opt.save_hybrid, save_conf=opt.save_conf, + half_precision=opt.half, opt=opt ) diff --git a/train.py b/train.py index 3e8d5075aef1..093a6197ff06 100644 --- a/train.py +++ b/train.py @@ -4,6 +4,7 @@ import os import random import time +import warnings from copy import deepcopy from pathlib import Path from threading import Thread @@ -62,7 +63,6 @@ def train(hyp, opt, device, tb_writer=None): init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.safe_load(f) # data dict - is_coco = opt.data.endswith('coco.yaml') # Logging- Doing this before checking the dataset. Might update data_dict loggers = {'wandb': None} # loggers dict @@ -78,12 +78,13 @@ def train(hyp, opt, device, tb_writer=None): nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check + is_coco = opt.data.endswith('coco.yaml') and nc == 80 # COCO dataset # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): - attempt_download(weights) # download if not found locally + weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys @@ -323,18 +324,19 @@ def train(hyp, opt, device, tb_writer=None): mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( - '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) + f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() - if tb_writer: - tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph - # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) + if tb_writer and ni == 0: + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress jit trace warning + tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # graph elif plots and ni == 10 and wandb_logger.wandb: - wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in + wandb_logger.log({'Mosaics': [wandb_logger.wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ @@ -358,6 +360,7 @@ def train(hyp, opt, device, tb_writer=None): single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, + save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, @@ -409,41 +412,38 @@ def train(hyp, opt, device, tb_writer=None): # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: - # Plots + logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') if plots: plot_results(save_dir=save_dir) # save as results.png if wandb_logger.wandb: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) - # Test best.pt - logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) - if opt.data.endswith('coco.yaml') and nc == 80: # if COCO - for m in [last, best] if best.exists() else [last]: # speed, mAP tests - results, _, _ = test.test(opt.data, - batch_size=batch_size * 2, - imgsz=imgsz_test, - conf_thres=0.001, - iou_thres=0.7, - model=attempt_load(m, device).half(), - single_cls=opt.single_cls, - dataloader=testloader, - save_dir=save_dir, - save_json=True, - plots=False, - is_coco=is_coco) - - # Strip optimizers - final = best if best.exists() else last # final model - for f in last, best: - if f.exists(): - strip_optimizer(f) # strip optimizers - if opt.bucket: - os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload - if wandb_logger.wandb and not opt.evolve: # Log the stripped model - wandb_logger.wandb.log_artifact(str(final), type='model', - name='run_' + wandb_logger.wandb_run.id + '_model', - aliases=['latest', 'best', 'stripped']) + + if not opt.evolve: + if is_coco: # COCO dataset + for m in [last, best] if best.exists() else [last]: # speed, mAP tests + results, _, _ = test.test(opt.data, + batch_size=batch_size * 2, + imgsz=imgsz_test, + conf_thres=0.001, + iou_thres=0.7, + model=attempt_load(m, device).half(), + single_cls=opt.single_cls, + dataloader=testloader, + save_dir=save_dir, + save_json=True, + plots=False, + is_coco=is_coco) + + # Strip optimizers + for f in last, best: + if f.exists(): + strip_optimizer(f) # strip optimizers + if wandb_logger.wandb: # Log the stripped model + wandb_logger.wandb.log_artifact(str(best if best.exists() else last), type='model', + name='run_' + wandb_logger.wandb_run.id + '_model', + aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() else: dist.destroy_process_group() diff --git a/tutorial.ipynb b/tutorial.ipynb index 3954feadfcb2..4e760b13bb41 100644 --- a/tutorial.ipynb +++ b/tutorial.ipynb @@ -517,7 +517,8 @@ "colab_type": "text" }, "source": [ - "\"Open" + "\"Open", + "\"Kaggle\"" ] }, { @@ -529,7 +530,7 @@ "\n", "\n", "This is the **official YOLOv5 🚀 notebook** authored by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n", - "For more information please visit https://github.com/ultralytics/yolov5 and https://www.ultralytics.com. Thank you!" + "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!" ] }, { @@ -610,7 +611,7 @@ "YOLOv5 🚀 v5.0-1-g0f395b3 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", "\n", "Fusing layers... \n", - "Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS\n", + "Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPs\n", "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.008s)\n", "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.008s)\n", "Results saved to runs/detect/exp\n", @@ -733,7 +734,7 @@ "100% 168M/168M [00:05<00:00, 32.3MB/s]\n", "\n", "Fusing layers... \n", - "Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n", + "Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3102.29it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n", " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:23<00:00, 1.87it/s]\n", @@ -963,7 +964,7 @@ " 22 [-1, 10] 1 0 models.common.Concat [1] \n", " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", - "Model Summary: 283 layers, 7276605 parameters, 7276605 gradients, 17.1 GFLOPS\n", + "Model Summary: 283 layers, 7276605 parameters, 7276605 gradients, 17.1 GFLOPs\n", "\n", "Transferred 362/362 items from yolov5s.pt\n", "Scaled weight_decay = 0.0005\n", @@ -1260,4 +1261,4 @@ "outputs": [] } ] -} \ No newline at end of file +} diff --git a/utils/datasets.py b/utils/datasets.py index 7dd181400da5..b6e43b94cfe9 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -535,7 +535,7 @@ def __getitem__(self, index): # MixUp https://arxiv.org/pdf/1710.09412.pdf if random.random() < hyp['mixup']: img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) - r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) @@ -655,12 +655,12 @@ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 - x = np.arange(0, 256, dtype=np.int16) + x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) - img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) + img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed diff --git a/utils/general.py b/utils/general.py index 006e64859f32..a12b0aafba0e 100755 --- a/utils/general.py +++ b/utils/general.py @@ -1,5 +1,6 @@ # YOLOv5 general utils +import contextlib import glob import logging import math @@ -7,11 +8,13 @@ import platform import random import re -import subprocess +import signal import time +import urllib from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path +from subprocess import check_output import cv2 import numpy as np @@ -33,6 +36,26 @@ os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads +class timeout(contextlib.ContextDecorator): + # Usage: @timeout(seconds) decorator or 'with timeout(seconds):' context manager + def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): + self.seconds = int(seconds) + self.timeout_message = timeout_msg + self.suppress = bool(suppress_timeout_errors) + + def _timeout_handler(self, signum, frame): + raise TimeoutError(self.timeout_message) + + def __enter__(self): + signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM + signal.alarm(self.seconds) # start countdown for SIGALRM to be raised + + def __exit__(self, exc_type, exc_val, exc_tb): + signal.alarm(0) # Cancel SIGALRM if it's scheduled + if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError + return True + + def set_logging(rank=-1, verbose=True): logging.basicConfig( format="%(message)s", @@ -53,12 +76,12 @@ def get_latest_run(search_dir='.'): def is_docker(): - # Is environment a Docker container + # Is environment a Docker container? return Path('/workspace').exists() # or Path('/.dockerenv').exists() def is_colab(): - # Is environment a Google Colab instance + # Is environment a Google Colab instance? try: import google.colab return True @@ -66,6 +89,11 @@ def is_colab(): return False +def is_pip(): + # Is file in a pip package? + return 'site-packages' in Path(__file__).absolute().parts + + def emojis(str=''): # Return platform-dependent emoji-safe version of string return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str @@ -80,13 +108,13 @@ def check_online(): # Check internet connectivity import socket try: - socket.create_connection(("1.1.1.1", 443), 5) # check host accesability + socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility return True except OSError: return False -def check_git_status(): +def check_git_status(err_msg=', for updates see https://github.com/ultralytics/yolov5'): # Recommend 'git pull' if code is out of date print(colorstr('github: '), end='') try: @@ -95,9 +123,9 @@ def check_git_status(): assert check_online(), 'skipping check (offline)' cmd = 'git fetch && git config --get remote.origin.url' - url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url - branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out - n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind + url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch + branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out + n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind if n > 0: s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \ f"Use 'git pull' to update or 'git clone {url}' to download latest." @@ -105,7 +133,7 @@ def check_git_status(): s = f'up to date with {url} ✅' print(emojis(s)) # emoji-safe except Exception as e: - print(e) + print(f'{e}{err_msg}') def check_python(minimum='3.7.0', required=True): @@ -135,10 +163,11 @@ def check_requirements(requirements='requirements.txt', exclude=()): try: pkg.require(r) except Exception as e: # DistributionNotFound or VersionConflict if requirements not met - n += 1 print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...") try: - print(subprocess.check_output(f"pip install '{r}'", shell=True).decode()) + assert check_online(), f"'pip install {r}' skipped (offline)" + print(check_output(f"pip install '{r}'", shell=True).decode()) + n += 1 except Exception as e: print(f'{prefix} {e}') @@ -178,7 +207,8 @@ def check_file(file): if Path(file).is_file() or file == '': # exists return file elif file.startswith(('http://', 'https://')): # download - url, file = file, Path(file).name + url, file = file, Path(urllib.parse.unquote(str(file))).name # url, file (decode '%2F' to '/' etc.) + file = file.split('?')[0] # parse authentication https://url.com/file.txt?auth... print(f'Downloading {url} to {file}...') torch.hub.download_url_to_file(url, file) assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check diff --git a/utils/google_utils.py b/utils/google_utils.py index 63d3e5b212f3..aefc7de2db2e 100644 --- a/utils/google_utils.py +++ b/utils/google_utils.py @@ -4,6 +4,7 @@ import platform import subprocess import time +import urllib from pathlib import Path import requests @@ -16,11 +17,39 @@ def gsutil_getsize(url=''): return eval(s.split(' ')[0]) if len(s) else 0 # bytes -def attempt_download(file, repo='ultralytics/yolov5'): +def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''): + # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes + file = Path(file) + assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}" + try: # url1 + print(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, str(file)) + assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check + except Exception as e: # url2 + file.unlink(missing_ok=True) # remove partial downloads + print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...') + os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail + finally: + if not file.exists() or file.stat().st_size < min_bytes: # check + file.unlink(missing_ok=True) # remove partial downloads + print(f"ERROR: {assert_msg}\n{error_msg}") + print('') + + +def attempt_download(file, repo='ultralytics/yolov5'): # from utils.google_utils import *; attempt_download() # Attempt file download if does not exist file = Path(str(file).strip().replace("'", '')) if not file.exists(): + # URL specified + name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc. + if str(file).startswith(('http:/', 'https:/')): # download + url = str(file).replace(':/', '://') # Pathlib turns :// -> :/ + name = name.split('?')[0] # parse authentication https://url.com/file.txt?auth... + safe_download(file=name, url=url, min_bytes=1E5) + return name + + # GitHub assets file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required) try: response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api @@ -34,27 +63,14 @@ def attempt_download(file, repo='ultralytics/yolov5'): except: tag = 'v5.0' # current release - name = file.name if name in assets: - msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/' - redundant = False # second download option - try: # GitHub - url = f'https://github.com/{repo}/releases/download/{tag}/{name}' - print(f'Downloading {url} to {file}...') - torch.hub.download_url_to_file(url, file) - assert file.exists() and file.stat().st_size > 1E6 # check - except Exception as e: # GCP - print(f'Download error: {e}') - assert redundant, 'No secondary mirror' - url = f'https://storage.googleapis.com/{repo}/ckpt/{name}' - print(f'Downloading {url} to {file}...') - os.system(f"curl -L '{url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail - finally: - if not file.exists() or file.stat().st_size < 1E6: # check - file.unlink(missing_ok=True) # remove partial downloads - print(f'ERROR: Download failure: {msg}') - print('') - return + safe_download(file, + url=f'https://github.com/{repo}/releases/download/{tag}/{name}', + # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional) + min_bytes=1E5, + error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/') + + return str(file) def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): diff --git a/utils/torch_utils.py b/utils/torch_utils.py index aa54c3cf561e..6a7d07634813 100644 --- a/utils/torch_utils.py +++ b/utils/torch_utils.py @@ -18,7 +18,7 @@ import torchvision try: - import thop # for FLOPS computation + import thop # for FLOPs computation except ImportError: thop = None logger = logging.getLogger(__name__) @@ -105,13 +105,13 @@ def profile(x, ops, n=100, device=None): x = x.to(device) x.requires_grad = True print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') - print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") + print(f"\n{'Params':>12s}{'GFLOPs':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward try: - flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS + flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs except: flops = 0 @@ -219,13 +219,13 @@ def model_info(model, verbose=False, img_size=640): print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) - try: # FLOPS + try: # FLOPs from thop import profile stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input - flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS + flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float - fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS + fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs except (ImportError, Exception): fs = ''