From bc5a5deb95a4a9653851177985d617af1b9bfa8b Mon Sep 17 00:00:00 2001 From: Xintao Date: Fri, 16 Sep 2022 19:31:20 +0800 Subject: [PATCH] remove codeformer --- README.md | 2 +- cog_predict.py | 20 +- gfpgan/archs/codeformer_arch.py | 630 -------------------------------- gfpgan/utils.py | 4 - inference_gfpgan.py | 7 +- 5 files changed, 4 insertions(+), 659 deletions(-) delete mode 100644 gfpgan/archs/codeformer_arch.py diff --git a/README.md b/README.md index 285956f1..389021dc 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,7 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g :triangular_flag_on_post: **Updates** -- :white_check_mark: Add CodeFormer ([CC BY-NC-SA 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/)) and RestoreFormer. +- :white_check_mark: Add [RestoreFormer](https://github.com/wzhouxiff/RestoreFormer) inference codes. - :white_check_mark: Add [V1.4 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth), which produces slightly more details and better identity than V1.3. - :white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md) - :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/GFPGAN). diff --git a/cog_predict.py b/cog_predict.py index ff37ae3d..dc37cc32 100644 --- a/cog_predict.py +++ b/cog_predict.py @@ -46,9 +46,6 @@ def setup(self): os.system( 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights' ) - if not os.path.exists('gfpgan/weights/CodeFormer.pth'): - os.system( - 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P ./gfpgan/weights') # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') @@ -71,17 +68,11 @@ def predict( img: Path = Input(description='Input'), version: str = Input( description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.', - choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], + choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], default='v1.4'), scale: float = Input(description='Rescaling factor', default=2), - weight: float = Input( - description='Weight, only for CodeFormer. 0 for better quality, 1 for better identity', - default=0.5, - ge=0, - le=1.0) ) -> Path: - if not isinstance(weight, (int, float)): - weight = 0.5 + weight = 0.5 print(img, version, scale, weight) try: extension = os.path.splitext(os.path.basename(str(img)))[1] @@ -130,13 +121,6 @@ def predict( arch='RestoreFormer', channel_multiplier=2, bg_upsampler=self.upsampler) - elif version == 'CodeFormer': - self.face_enhancer = GFPGANer( - model_path='gfpgan/weights/CodeFormer.pth', - upscale=2, - arch='CodeFormer', - channel_multiplier=2, - bg_upsampler=self.upsampler) try: _, _, output = self.face_enhancer.enhance( diff --git a/gfpgan/archs/codeformer_arch.py b/gfpgan/archs/codeformer_arch.py deleted file mode 100644 index ba204a9e..00000000 --- a/gfpgan/archs/codeformer_arch.py +++ /dev/null @@ -1,630 +0,0 @@ -""" -Modified from https://github.com/sczhou/CodeFormer -VQGAN code, adapted from the original created by the Unleashing Transformers authors: -https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py -""" -import math -import torch -import torch.nn as nn -import torch.nn.functional as F -from basicsr.utils import get_root_logger -from basicsr.utils.registry import ARCH_REGISTRY -from torch import Tensor -from typing import Optional - - -class VectorQuantizer(nn.Module): - - def __init__(self, codebook_size, emb_dim, beta): - super(VectorQuantizer, self).__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 - self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) - self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) - - def forward(self, z): - # reshape z -> (batch, height, width, channel) and flatten - z = z.permute(0, 2, 3, 1).contiguous() - z_flattened = z.view(-1, self.emb_dim) - - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) - - mean_distance = torch.mean(d) - # find closest encodings - # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) - min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) - # [0-1], higher score, higher confidence - min_encoding_scores = torch.exp(-min_encoding_scores / 10) - - min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) - min_encodings.scatter_(1, min_encoding_indices, 1) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) - # compute loss for embedding - loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2) - # preserve gradients - z_q = z + (z_q - z).detach() - - # perplexity - e_mean = torch.mean(min_encodings, dim=0) - perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q, loss, { - 'perplexity': perplexity, - 'min_encodings': min_encodings, - 'min_encoding_indices': min_encoding_indices, - 'min_encoding_scores': min_encoding_scores, - 'mean_distance': mean_distance - } - - def get_codebook_feat(self, indices, shape): - # input indices: batch*token_num -> (batch*token_num)*1 - # shape: batch, height, width, channel - indices = indices.view(-1, 1) - min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) - min_encodings.scatter_(1, indices, 1) - # get quantized latent vectors - z_q = torch.matmul(min_encodings.float(), self.embedding.weight) - - if shape is not None: # reshape back to match original input shape - z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() - - return z_q - - -class GumbelQuantizer(nn.Module): - - def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): - super().__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.straight_through = straight_through - self.temperature = temp_init - self.kl_weight = kl_weight - self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits - self.embed = nn.Embedding(codebook_size, emb_dim) - - def forward(self, z): - hard = self.straight_through if self.training else True - - logits = self.proj(z) - - soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) - - z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) - - # + kl divergence to the prior loss - qy = F.softmax(logits, dim=1) - diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() - min_encoding_indices = soft_one_hot.argmax(dim=1) - - return z_q, diff, {'min_encoding_indices': min_encoding_indices} - - -class Downsample(nn.Module): - - def __init__(self, in_channels): - super().__init__() - self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) - - def forward(self, x): - pad = (0, 1, 0, 1) - x = torch.nn.functional.pad(x, pad, mode='constant', value=0) - x = self.conv(x) - return x - - -class Upsample(nn.Module): - - def __init__(self, in_channels): - super().__init__() - self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) - - def forward(self, x): - x = F.interpolate(x, scale_factor=2.0, mode='nearest') - x = self.conv(x) - - return x - - -class AttnBlock(nn.Module): - - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) - self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) - self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b, c, h, w = q.shape - q = q.reshape(b, c, h * w) - q = q.permute(0, 2, 1) - k = k.reshape(b, c, h * w) - w_ = torch.bmm(q, k) - w_ = w_ * (int(c)**(-0.5)) - w_ = F.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b, c, h * w) - w_ = w_.permute(0, 2, 1) - h_ = torch.bmm(v, w_) - h_ = h_.reshape(b, c, h, w) - - h_ = self.proj_out(h_) - - return x + h_ - - -class Encoder(nn.Module): - - def __init__(self, in_channels, nf, out_channels, ch_mult, num_res_blocks, resolution, attn_resolutions): - super().__init__() - self.nf = nf - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.attn_resolutions = attn_resolutions - - curr_res = self.resolution - in_ch_mult = (1, ) + tuple(ch_mult) - - blocks = [] - # initial convultion - blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) - - # residual and downsampling blocks, with attention on smaller res (16x16) - for i in range(self.num_resolutions): - block_in_ch = nf * in_ch_mult[i] - block_out_ch = nf * ch_mult[i] - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - if curr_res in attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != self.num_resolutions - 1: - blocks.append(Downsample(block_in_ch)) - curr_res = curr_res // 2 - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - # normalise and convert to latent size - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1)) - self.blocks = nn.ModuleList(blocks) - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -class Generator(nn.Module): - - def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim): - super().__init__() - self.nf = nf - self.ch_mult = ch_mult - self.num_resolutions = len(self.ch_mult) - self.num_res_blocks = res_blocks - self.resolution = img_size - self.attn_resolutions = attn_resolutions - self.in_channels = emb_dim - self.out_channels = 3 - block_in_ch = self.nf * self.ch_mult[-1] - curr_res = self.resolution // 2**(self.num_resolutions - 1) - - blocks = [] - # initial conv - blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - for i in reversed(range(self.num_resolutions)): - block_out_ch = self.nf * self.ch_mult[i] - - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - - if curr_res in self.attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != 0: - blocks.append(Upsample(block_in_ch)) - curr_res = curr_res * 2 - - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) - - self.blocks = nn.ModuleList(blocks) - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -class VQAutoEncoder(nn.Module): - - def __init__(self, - img_size, - nf, - ch_mult, - quantizer='nearest', - res_blocks=2, - attn_resolutions=[16], - codebook_size=1024, - emb_dim=256, - beta=0.25, - gumbel_straight_through=False, - gumbel_kl_weight=1e-8, - model_path=None): - super().__init__() - logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks - self.codebook_size = codebook_size - self.embed_dim = emb_dim - self.ch_mult = ch_mult - self.resolution = img_size - self.attn_resolutions = attn_resolutions - self.quantizer_type = quantizer - self.encoder = Encoder(self.in_channels, self.nf, self.embed_dim, self.ch_mult, self.n_blocks, self.resolution, - self.attn_resolutions) - if self.quantizer_type == 'nearest': - self.beta = beta # 0.25 - self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) - elif self.quantizer_type == 'gumbel': - self.gumbel_num_hiddens = emb_dim - self.straight_through = gumbel_straight_through - self.kl_weight = gumbel_kl_weight - self.quantize = GumbelQuantizer(self.codebook_size, self.embed_dim, self.gumbel_num_hiddens, - self.straight_through, self.kl_weight) - self.generator = Generator(nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim) - - if model_path is not None: - chkpt = torch.load(model_path, map_location='cpu') - if 'params_ema' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) - logger.info(f'vqgan is loaded from: {model_path} [params_ema]') - elif 'params' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) - logger.info(f'vqgan is loaded from: {model_path} [params]') - else: - raise ValueError('Wrong params!') - - def forward(self, x): - x = self.encoder(x) - quant, codebook_loss, quant_stats = self.quantize(x) - x = self.generator(quant) - return x, codebook_loss, quant_stats - - -def calc_mean_std(feat, eps=1e-5): - """Calculate mean and std for adaptive_instance_normalization. - - Args: - feat (Tensor): 4D tensor. - eps (float): A small value added to the variance to avoid - divide-by-zero. Default: 1e-5. - """ - size = feat.size() - assert len(size) == 4, 'The input feature should be 4D tensor.' - b, c = size[:2] - feat_var = feat.view(b, c, -1).var(dim=2) + eps - feat_std = feat_var.sqrt().view(b, c, 1, 1) - feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) - return feat_mean, feat_std - - -def adaptive_instance_normalization(content_feat, style_feat): - """Adaptive instance normalization. - - Adjust the reference features to have the similar color and illuminations - as those in the degradate features. - - Args: - content_feat (Tensor): The reference feature. - style_feat (Tensor): The degradate features. - """ - size = content_feat.size() - style_mean, style_std = calc_mean_std(style_feat) - content_mean, content_std = calc_mean_std(content_feat) - normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) - return normalized_feat * style_std.expand(size) + style_mean.expand(size) - - -class PositionEmbeddingSine(nn.Module): - """ - This is a more standard version of the position embedding, very similar to the one - used by the Attention is all you need paper, generalized to work on images. - """ - - def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): - super().__init__() - self.num_pos_feats = num_pos_feats - self.temperature = temperature - self.normalize = normalize - if scale is not None and normalize is False: - raise ValueError('normalize should be True if scale is passed') - if scale is None: - scale = 2 * math.pi - self.scale = scale - - def forward(self, x, mask=None): - if mask is None: - mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) - not_mask = ~mask - y_embed = not_mask.cumsum(1, dtype=torch.float32) - x_embed = not_mask.cumsum(2, dtype=torch.float32) - if self.normalize: - eps = 1e-6 - y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale - x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale - - dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) - dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) - - pos_x = x_embed[:, :, :, None] / dim_t - pos_y = y_embed[:, :, :, None] / dim_t - pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) - pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) - pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) - return pos - - -def _get_activation_fn(activation): - """Return an activation function given a string""" - if activation == 'relu': - return F.relu - if activation == 'gelu': - return F.gelu - if activation == 'glu': - return F.glu - raise RuntimeError(F'activation should be relu/gelu, not {activation}.') - - -class TransformerSALayer(nn.Module): - - def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation='gelu'): - super().__init__() - self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) - # Implementation of Feedforward model - MLP - self.linear1 = nn.Linear(embed_dim, dim_mlp) - self.dropout = nn.Dropout(dropout) - self.linear2 = nn.Linear(dim_mlp, embed_dim) - - self.norm1 = nn.LayerNorm(embed_dim) - self.norm2 = nn.LayerNorm(embed_dim) - self.dropout1 = nn.Dropout(dropout) - self.dropout2 = nn.Dropout(dropout) - - self.activation = _get_activation_fn(activation) - - def with_pos_embed(self, tensor, pos: Optional[Tensor]): - return tensor if pos is None else tensor + pos - - def forward(self, - tgt, - tgt_mask: Optional[Tensor] = None, - tgt_key_padding_mask: Optional[Tensor] = None, - query_pos: Optional[Tensor] = None): - - # self attention - tgt2 = self.norm1(tgt) - q = k = self.with_pos_embed(tgt2, query_pos) - tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] - tgt = tgt + self.dropout1(tgt2) - - # ffn - tgt2 = self.norm2(tgt) - tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) - tgt = tgt + self.dropout2(tgt2) - return tgt - - -def normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -@torch.jit.script -def swish(x): - return x * torch.sigmoid(x) - - -class ResBlock(nn.Module): - - def __init__(self, in_channels, out_channels=None): - super(ResBlock, self).__init__() - self.in_channels = in_channels - self.out_channels = in_channels if out_channels is None else out_channels - self.norm1 = normalize(in_channels) - self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.norm2 = normalize(out_channels) - self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x_in): - x = x_in - x = self.norm1(x) - x = swish(x) - x = self.conv1(x) - x = self.norm2(x) - x = swish(x) - x = self.conv2(x) - if self.in_channels != self.out_channels: - x_in = self.conv_out(x_in) - - return x + x_in - - -class Fuse_sft_block(nn.Module): - - def __init__(self, in_ch, out_ch): - super().__init__() - self.encode_enc = ResBlock(2 * in_ch, out_ch) - - self.scale = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - self.shift = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - def forward(self, enc_feat, dec_feat, w=1): - enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) - scale = self.scale(enc_feat) - shift = self.shift(enc_feat) - residual = w * (dec_feat * scale + shift) - out = dec_feat + residual - return out - - -@ARCH_REGISTRY.register() -class CodeFormer(VQAutoEncoder): - - def __init__(self, - dim_embd=512, - n_head=8, - n_layers=9, - codebook_size=1024, - latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize', 'generator']): - super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', 2, [16], codebook_size) - - if fix_modules is not None: - for module in fix_modules: - for param in getattr(self, module).parameters(): - param.requires_grad = False - - self.connect_list = connect_list - self.n_layers = n_layers - self.dim_embd = dim_embd - self.dim_mlp = dim_embd * 2 - - self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) - self.feat_emb = nn.Linear(256, self.dim_embd) - - # transformer - self.ft_layers = nn.Sequential(*[ - TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) - for _ in range(self.n_layers) - ]) - - # logits_predict head - self.idx_pred_layer = nn.Sequential(nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) - - self.channels = {'16': 512, '32': 256, '64': 256, '128': 128, '256': 128, '512': 64} - - # after second residual block for > 16, before attn layer for ==16 - self.fuse_encoder_block = {'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18} - # after first residual block for > 16, before attn layer for ==16 - self.fuse_generator_block = {'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21} - - # fuse_convs_dict - self.fuse_convs_dict = nn.ModuleDict() - for f_size in self.connect_list: - in_ch = self.channels[f_size] - self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, x, weight=0.5, **kwargs): - detach_16 = True - code_only = False - adain = True - # ################### Encoder ##################### - enc_feat_dict = {} - out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] - for i, block in enumerate(self.encoder.blocks): - x = block(x) - if i in out_list: - enc_feat_dict[str(x.shape[-1])] = x.clone() - - lq_feat = x - # ################# Transformer ################### - # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) - pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1) - # BCHW -> BC(HW) -> (HW)BC - feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1)) - query_emb = feat_emb - # Transformer encoder - for layer in self.ft_layers: - query_emb = layer(query_emb, query_pos=pos_emb) - - # output logits - logits = self.idx_pred_layer(query_emb) # (hw)bn - logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n - - if code_only: # for training stage II - # logits doesn't need softmax before cross_entropy loss - return logits, lq_feat - - # ################# Quantization ################### - # if self.training: - # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) - # # b(hw)c -> bc(hw) -> bchw - # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) - # ------------ - soft_one_hot = F.softmax(logits, dim=2) - _, top_idx = torch.topk(soft_one_hot, 1, dim=2) - quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0], 16, 16, 256]) - # preserve gradients - # quant_feat = lq_feat + (quant_feat - lq_feat).detach() - - if detach_16: - quant_feat = quant_feat.detach() # for training stage III - if adain: - quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) - - # ################## Generator #################### - x = quant_feat - fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] - - for i, block in enumerate(self.generator.blocks): - x = block(x) - if i in fuse_list: # fuse after i-th block - f_size = str(x.shape[-1]) - if weight > 0: - x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, weight) - out = x - # logits doesn't need softmax before cross_entropy loss - # return out, logits, lq_feat - return out, logits diff --git a/gfpgan/utils.py b/gfpgan/utils.py index 3dba847a..74ee5a83 100644 --- a/gfpgan/utils.py +++ b/gfpgan/utils.py @@ -75,10 +75,6 @@ def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg elif arch == 'RestoreFormer': from gfpgan.archs.restoreformer_arch import RestoreFormer self.gfpgan = RestoreFormer() - elif arch == 'CodeFormer': - from gfpgan.archs.codeformer_arch import CodeFormer - self.gfpgan = CodeFormer( - dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']) # initialize face helper self.face_helper = FaceRestoreHelper( upscale, diff --git a/inference_gfpgan.py b/inference_gfpgan.py index 519c518c..845bbad5 100644 --- a/inference_gfpgan.py +++ b/inference_gfpgan.py @@ -41,7 +41,7 @@ def main(): type=str, default='auto', help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto') - parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights for CodeFormer.') + parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.') args = parser.parse_args() args = parser.parse_args() @@ -104,11 +104,6 @@ def main(): channel_multiplier = 2 model_name = 'RestoreFormer' url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth' - elif args.version == 'CodeFormer': - arch = 'CodeFormer' - channel_multiplier = 2 - model_name = 'CodeFormer' - url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth' else: raise ValueError(f'Wrong model version {args.version}.')