-
Notifications
You must be signed in to change notification settings - Fork 20
/
run_model.cpp
70 lines (58 loc) · 2.06 KB
/
run_model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Copyright 2021 Wechat Group, Tencent
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <stdexcept>
#include <thread>
#include "tfcc.h"
#include "tfcc_mkl.h"
#include "tfcc_runtime/tfcc_runtime.h"
std::string load_data_from_file(const std::string& path) {
std::ifstream ifs(path, std::ios::binary);
if (!ifs) {
throw std::runtime_error("open file: \"" + path + "\" failed");
}
ifs.seekg(0, ifs.end);
auto length = ifs.tellg();
ifs.seekg(0, ifs.beg);
std::unique_ptr<char[]> buffer(new char[length]);
ifs.read(buffer.get(), length);
std::string data(buffer.get(), length);
return data;
}
int main(int argc, char* argv[]) {
tfcc::runtime::Graph::setRecordDetailErrorThreadLocal(true);
if (argc < 3) {
std::cout << "Usage: " << argv[0] << " [model path]" << std::endl;
return 1;
}
tfcc::initialize_mkl(1, 4);
std::string modelData = load_data_from_file(argv[1]);
std::string testData = load_data_from_file(argv[2]);
tfcc::MultiDataLoader loader;
tfcc::DataLoader::setGlobalDefault(&loader);
tfcc::Coster coster;
tfcc::runtime::Model model(modelData);
std::cout << "Load model cost: " << coster.lap().milliseconds() << std::endl;
tfcc::runtime::data::Inputs inputs;
tfcc::runtime::data::Outputs outputs;
// set inputs
auto item = inputs.add_items();
item->set_name("The input name");
item->set_dtype(tfcc::runtime::common::FLOAT);
std::vector<float> data = {1.0, 2.0};
item->set_data(data.data(), data.size() * sizeof(float));
model.run(inputs, outputs);
return 0;
}