-
Notifications
You must be signed in to change notification settings - Fork 771
/
blazeface_detector.cc
136 lines (115 loc) · 5.59 KB
/
blazeface_detector.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Tencent is pleased to support the open source community by making TNN available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "blazeface_detector.h"
#include <cmath>
#include <fstream>
#include <cstring>
#include <time.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/time.h>
#endif
namespace TNN_NS {
Status BlazeFaceDetector::Init(std::shared_ptr<TNNSDKOption> option_i) {
Status status = TNN_OK;
auto option = dynamic_cast<BlazeFaceDetectorOption *>(option_i.get());
RETURN_VALUE_ON_NEQ(!option, false,
Status(TNNERR_PARAM_ERR, "TNNSDKOption is invalid"));
status = TNNSDKSample::Init(option_i);
RETURN_ON_NEQ(status, TNN_OK);
std::ifstream inFile(option->anchor_path);
RETURN_VALUE_ON_NEQ(inFile.good(), true, Status(TNNERR_PARAM_ERR, "TNNSDKOption.anchor_path is invalid"));
std::string line;
anchors.reserve(num_anchors * 4);
int index = 0;
while(std::getline(inFile, line, '\n')) {
float val = std::stof(line);
anchors[index++] = val;
}
RETURN_VALUE_ON_NEQ(index == num_anchors*4, true,
Status(TNNERR_PARAM_ERR, "TNNSDKOption.anchor_path doesnot contain valid blazeface anchors"));
auto input_dims = GetInputShape();
option->input_height = input_dims[2];
option->input_width = input_dims[3];
return status;
}
std::shared_ptr<Mat> BlazeFaceDetector::ProcessSDKInputMat(std::shared_ptr<Mat> input_mat,
std::string name) {
return TNNSDKSample::ResizeToInputShape(input_mat, name);
}
MatConvertParam BlazeFaceDetector::GetConvertParamForInput(std::string tag) {
MatConvertParam input_convert_param;
input_convert_param.scale = {1.0 / 127.5, 1.0 / 127.5, 1.0 / 127.5, 0.0};
input_convert_param.bias = {-1.0, -1.0, -1.0, 0.0};
return input_convert_param;
}
std::shared_ptr<TNNSDKOutput> BlazeFaceDetector::CreateSDKOutput() {
return std::make_shared<BlazeFaceDetectorOutput>();
}
Status BlazeFaceDetector::ProcessSDKOutput(std::shared_ptr<TNNSDKOutput> output_) {
Status status = TNN_OK;
auto option = dynamic_cast<BlazeFaceDetectorOption *>(option_.get());
RETURN_VALUE_ON_NEQ(!option, false,
Status(TNNERR_PARAM_ERR, "TNNSDKOption is invalid"));
auto output = dynamic_cast<BlazeFaceDetectorOutput *>(output_.get());
RETURN_VALUE_ON_NEQ(!output, false,
Status(TNNERR_PARAM_ERR, "TNNSDKOutput is invalid"));
auto scores = output->GetMat("546");
auto boxes = output->GetMat("544");
RETURN_VALUE_ON_NEQ(!scores, false,
Status(TNNERR_PARAM_ERR, "scores mat is nil"));
RETURN_VALUE_ON_NEQ(!boxes, false,
Status(TNNERR_PARAM_ERR, "boxes mat is nil"));
std::vector<BlazeFaceInfo> bbox_collection;
//decode bbox
GenerateBBox(bbox_collection, *(scores.get()), *(boxes.get()), option->input_width, option->input_height, option->min_score_threshold);
std::vector<BlazeFaceInfo> face_list;
BlendingNMS(bbox_collection, face_list, option->min_suppression_threshold);
output->face_list = face_list;
return status;
}
void BlazeFaceDetector::GenerateBBox(std::vector<BlazeFaceInfo> &detects, TNN_NS::Mat &scores, TNN_NS::Mat &boxes, int image_w, int image_h, float min_score_threshold) {
float *boxes_data = static_cast<float*>(boxes.GetData());
float *score_data = static_cast<float*>(scores.GetData());
for(int i=0; i<num_anchors; ++i) {
if(score_data[i] < min_score_threshold)
continue;
float x_center = boxes_data[i * detect_dims + 0] / image_w * anchors[i * 4 + 2] + anchors[i * 4 + 0];
float y_center = boxes_data[i * detect_dims + 1] / image_h * anchors[i * 4 + 3] + anchors[i * 4 + 1];
float width = boxes_data[i * detect_dims + 2] / image_w * anchors[i * 4 + 2] ;
float height = boxes_data[i * detect_dims + 3] / image_h * anchors[i * 4 + 3] ;
BlazeFaceInfo info;
info.image_width = image_w;
info.image_height = image_h;
info.score = score_data[i];
// bbox
info.x1 = (x_center - width / 2.0) * image_w;
info.y1 = (y_center - height / 2.0) * image_h;
info.x2 = (x_center + width / 2.0) * image_w;
info.y2 = (y_center + height / 2.0) * image_h;
// key points
for(int j=0; j<num_keypoints; ++j) {
int offset = j * 2 + 4;
float kp_x = (boxes_data[i * detect_dims + offset + 0] / image_w * anchors[i * 4 + 2] + anchors[i * 4 + 0]) * image_w;
float kp_y = (boxes_data[i * detect_dims + offset + 1] / image_h * anchors[i * 4 + 3] + anchors[i * 4 + 1]) * image_h;
info.key_points.push_back(std::make_pair(kp_x, kp_y));
}
detects.push_back(std::move(info));
}
}
void BlazeFaceDetector::BlendingNMS(std::vector<BlazeFaceInfo> &input, std::vector<BlazeFaceInfo> &output, float min_suppression_threshold) {
::TNN_NS::NMS(input, output, min_suppression_threshold, TNNBlendingNMS);
}
}