-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai.py
102 lines (85 loc) · 3.56 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 11 07:38:45 2019
@author: tejas
"""
import random
import numpy as np
from collections import deque
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Dropout
from tensorflow.python.keras.optimizers import Adam
import logging
logger = logging.getLogger("mario")
class AI:
def __init__(self, action_size, input_shape, batch_size = 32):
logger.info("Starting AI")
self.action_size = action_size
self.input_shape = input_shape
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
self.batch_size = batch_size
self.count = 0
def _build_model(self):
# Neural Net for Deep-Q learning Model
logger.info("Building Model")
model = Sequential()
#model.add(Conv2D(filters = 128, kernel_size = (3,3), activation = "relu", input_shape = self.input_shape))
#model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = "relu"))
#model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.25))
#model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = "relu"))
#model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = "relu"))
#model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.25))
#model.add(Flatten())
model.add(Dense(units = 32, activation='relu',input_shape = self.input_shape))
model.add(Dropout(0.2))
model.add(Dense(units = 32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(12, activation='relu'))
model.add(Dense(self.action_size, activation='sigmoid'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
logging.debug("Built Network")
logging.debug(model.summary())
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def action(self, state):
return np.argmax(self.model.predict(state))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self):
logger.debug("Training Model")
self.count = self.count + 1
minibatch = random.sample(self.memory, self.batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
if self.count % 5 == 0:
logger.info("Espilon Decay :- {}".format(self.epsilon))
def load(self, name):
logger.info("Loading Model")
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
def getModel(self):
return self.model