-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaadhar.py
75 lines (57 loc) · 2.3 KB
/
aadhar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from PIL import Image
import cv2
import numpy as np
from model_images import cv2_to_pil
CONFIDENCE_THRESHOLD = 0.8
FRAME_ROTATION_ANGLE = 0
net = cv2.dnn.readNet("qrcode-yolov3-tiny_last.weights", "qrcode-yolov3-tiny.cfg")
classes = []
with open("qrcode.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def save_face(img_path):
image = cv2.imread(img_path)
face_img = image.copy()
face_rect = face_cascade.detectMultiScale(face_img, scaleFactor = 1.2, minNeighbors = 5)
for (x, y, w, h) in face_rect:
cv2.rectangle(face_img, (x, y), (x + w, y + h), (255, 255, 255), 10)
face_img = face_img[y:y+h, x:x+w]
filename = 'D:\T\SpitHackathon\src\images/a.jpeg'
cv2.imwrite(filename, face_img)
img = image[950:-950, :]
height, width, channels = img.shape
h32 = 32*(height//32)
w32 = 32*(width//32)
blob = cv2.dnn.blobFromImage(img, 1/255, (h32, w32), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > CONFIDENCE_THRESHOLD:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
qr_code = None
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
qr_code = img[y:y+h, x:x+w]
qr_filename = 'D:\T\SpitHackathon\src\images/qr_code.jpeg'
cv2.imwrite(qr_filename, qr_code)