|
| 1 | +/** |
| 2 | + * Time Complexity: O(n) - Single pass |
| 3 | + * Space Complexity: O(1) - No extra space |
| 4 | + */ |
| 5 | +class Solution { |
| 6 | + public int singleNumber(int[] nums) { |
| 7 | + int result = 0; |
| 8 | + |
| 9 | + for (int i = 0; i < 32; i++) { |
| 10 | + int count = 0; |
| 11 | + |
| 12 | + for (int num : nums) { |
| 13 | + if (((num >> i) & 1) == 1) { |
| 14 | + count++; |
| 15 | + } |
| 16 | + } |
| 17 | + |
| 18 | + if (count % 3 != 0) { |
| 19 | + result |= (1 << i); |
| 20 | + } |
| 21 | + } |
| 22 | + |
| 23 | + return result; |
| 24 | + } |
| 25 | +} |
| 26 | + |
| 27 | +// Alternative approach using hash map |
| 28 | +class SolutionHashMap { |
| 29 | + public int singleNumber(int[] nums) { |
| 30 | + Map<Integer, Integer> count = new HashMap<>(); |
| 31 | + |
| 32 | + for (int num : nums) { |
| 33 | + count.put(num, count.getOrDefault(num, 0) + 1); |
| 34 | + } |
| 35 | + |
| 36 | + for (Map.Entry<Integer, Integer> entry : count.entrySet()) { |
| 37 | + if (entry.getValue() == 1) { |
| 38 | + return entry.getKey(); |
| 39 | + } |
| 40 | + } |
| 41 | + |
| 42 | + return -1; // Should never reach here |
| 43 | + } |
| 44 | +} |
| 45 | + |
| 46 | +// Alternative approach using sorting |
| 47 | +class SolutionSorting { |
| 48 | + public int singleNumber(int[] nums) { |
| 49 | + Arrays.sort(nums); |
| 50 | + |
| 51 | + for (int i = 0; i < nums.length - 2; i += 3) { |
| 52 | + if (nums[i] != nums[i + 1]) { |
| 53 | + return nums[i]; |
| 54 | + } |
| 55 | + } |
| 56 | + |
| 57 | + return nums[nums.length - 1]; |
| 58 | + } |
| 59 | +} |
| 60 | + |
| 61 | +// Alternative approach using iterative |
| 62 | +class SolutionIterative { |
| 63 | + public int singleNumber(int[] nums) { |
| 64 | + int result = 0; |
| 65 | + |
| 66 | + for (int i = 0; i < 32; i++) { |
| 67 | + int count = 0; |
| 68 | + |
| 69 | + for (int j = 0; j < nums.length; j++) { |
| 70 | + if (((nums[j] >> i) & 1) == 1) { |
| 71 | + count++; |
| 72 | + } |
| 73 | + } |
| 74 | + |
| 75 | + if (count % 3 != 0) { |
| 76 | + result |= (1 << i); |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + return result; |
| 81 | + } |
| 82 | +} |
| 83 | + |
| 84 | +// Alternative approach using while loop |
| 85 | +class SolutionWhileLoop { |
| 86 | + public int singleNumber(int[] nums) { |
| 87 | + int result = 0; |
| 88 | + int i = 0; |
| 89 | + |
| 90 | + while (i < 32) { |
| 91 | + int count = 0; |
| 92 | + int j = 0; |
| 93 | + |
| 94 | + while (j < nums.length) { |
| 95 | + if (((nums[j] >> i) & 1) == 1) { |
| 96 | + count++; |
| 97 | + } |
| 98 | + j++; |
| 99 | + } |
| 100 | + |
| 101 | + if (count % 3 != 0) { |
| 102 | + result |= (1 << i); |
| 103 | + } |
| 104 | + |
| 105 | + i++; |
| 106 | + } |
| 107 | + |
| 108 | + return result; |
| 109 | + } |
| 110 | +} |
| 111 | + |
| 112 | +// Alternative approach using enhanced for loop |
| 113 | +class SolutionEnhancedForLoop { |
| 114 | + public int singleNumber(int[] nums) { |
| 115 | + int result = 0; |
| 116 | + |
| 117 | + for (int i = 0; i < 32; i++) { |
| 118 | + int count = 0; |
| 119 | + |
| 120 | + for (int num : nums) { |
| 121 | + if (((num >> i) & 1) == 1) { |
| 122 | + count++; |
| 123 | + } |
| 124 | + } |
| 125 | + |
| 126 | + if (count % 3 != 0) { |
| 127 | + result |= (1 << i); |
| 128 | + } |
| 129 | + } |
| 130 | + |
| 131 | + return result; |
| 132 | + } |
| 133 | +} |
| 134 | + |
| 135 | +// Alternative approach using recursive |
| 136 | +class SolutionRecursive { |
| 137 | + public int singleNumber(int[] nums) { |
| 138 | + return singleNumberHelper(nums, 0, 0); |
| 139 | + } |
| 140 | + |
| 141 | + private int singleNumberHelper(int[] nums, int bitPos, int result) { |
| 142 | + if (bitPos >= 32) { |
| 143 | + return result; |
| 144 | + } |
| 145 | + |
| 146 | + int count = 0; |
| 147 | + for (int num : nums) { |
| 148 | + if (((num >> bitPos) & 1) == 1) { |
| 149 | + count++; |
| 150 | + } |
| 151 | + } |
| 152 | + |
| 153 | + if (count % 3 != 0) { |
| 154 | + result |= (1 << bitPos); |
| 155 | + } |
| 156 | + |
| 157 | + return singleNumberHelper(nums, bitPos + 1, result); |
| 158 | + } |
| 159 | +} |
| 160 | + |
| 161 | +// Alternative approach using mathematical |
| 162 | +class SolutionMathematical { |
| 163 | + public int singleNumber(int[] nums) { |
| 164 | + Set<Integer> set = new HashSet<>(); |
| 165 | + long sum = 0; |
| 166 | + long uniqueSum = 0; |
| 167 | + |
| 168 | + for (int num : nums) { |
| 169 | + sum += num; |
| 170 | + if (set.add(num)) { |
| 171 | + uniqueSum += num; |
| 172 | + } |
| 173 | + } |
| 174 | + |
| 175 | + return (int) ((3 * uniqueSum - sum) / 2); |
| 176 | + } |
| 177 | +} |
| 178 | + |
| 179 | +// More concise version |
| 180 | +class SolutionConcise { |
| 181 | + public int singleNumber(int[] nums) { |
| 182 | + int result = 0; |
| 183 | + for (int i = 0; i < 32; i++) { |
| 184 | + int count = 0; |
| 185 | + for (int num : nums) { |
| 186 | + if (((num >> i) & 1) == 1) count++; |
| 187 | + } |
| 188 | + if (count % 3 != 0) result |= (1 << i); |
| 189 | + } |
| 190 | + return result; |
| 191 | + } |
| 192 | +} |
0 commit comments