|
| 1 | +/** |
| 2 | + * Time Complexity: O(n) - Three passes |
| 3 | + * Space Complexity: O(1) - In-place modification |
| 4 | + */ |
| 5 | +class Solution { |
| 6 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 7 | + List<int[]> result = new ArrayList<>(); |
| 8 | + |
| 9 | + // First pass: Add all intervals before newInterval |
| 10 | + int i = 0; |
| 11 | + while (i < intervals.length && intervals[i][1] < newInterval[0]) { |
| 12 | + result.add(intervals[i]); |
| 13 | + i++; |
| 14 | + } |
| 15 | + |
| 16 | + // Second pass: Merge overlapping intervals with newInterval |
| 17 | + while (i < intervals.length && intervals[i][0] <= newInterval[1]) { |
| 18 | + newInterval[0] = Math.min(newInterval[0], intervals[i][0]); |
| 19 | + newInterval[1] = Math.max(newInterval[1], intervals[i][1]); |
| 20 | + i++; |
| 21 | + } |
| 22 | + result.add(newInterval); |
| 23 | + |
| 24 | + // Third pass: Add all intervals after newInterval |
| 25 | + while (i < intervals.length) { |
| 26 | + result.add(intervals[i]); |
| 27 | + i++; |
| 28 | + } |
| 29 | + |
| 30 | + return result.toArray(new int[result.size()][]); |
| 31 | + } |
| 32 | +} |
| 33 | + |
| 34 | +// Alternative approach using binary search |
| 35 | +class SolutionBinarySearch { |
| 36 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 37 | + List<int[]> result = new ArrayList<>(); |
| 38 | + |
| 39 | + // Find insertion point using binary search |
| 40 | + int left = 0, right = intervals.length; |
| 41 | + while (left < right) { |
| 42 | + int mid = left + (right - left) / 2; |
| 43 | + if (intervals[mid][0] < newInterval[0]) { |
| 44 | + left = mid + 1; |
| 45 | + } else { |
| 46 | + right = mid; |
| 47 | + } |
| 48 | + } |
| 49 | + |
| 50 | + // Add intervals before insertion point |
| 51 | + for (int i = 0; i < left; i++) { |
| 52 | + result.add(intervals[i]); |
| 53 | + } |
| 54 | + |
| 55 | + // Merge overlapping intervals |
| 56 | + int start = newInterval[0]; |
| 57 | + int end = newInterval[1]; |
| 58 | + |
| 59 | + while (left < intervals.length && intervals[left][0] <= end) { |
| 60 | + start = Math.min(start, intervals[left][0]); |
| 61 | + end = Math.max(end, intervals[left][1]); |
| 62 | + left++; |
| 63 | + } |
| 64 | + |
| 65 | + result.add(new int[]{start, end}); |
| 66 | + |
| 67 | + // Add remaining intervals |
| 68 | + for (int i = left; i < intervals.length; i++) { |
| 69 | + result.add(intervals[i]); |
| 70 | + } |
| 71 | + |
| 72 | + return result.toArray(new int[result.size()][]); |
| 73 | + } |
| 74 | +} |
| 75 | + |
| 76 | +// Alternative approach using single pass |
| 77 | +class SolutionSinglePass { |
| 78 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 79 | + List<int[]> result = new ArrayList<>(); |
| 80 | + boolean inserted = false; |
| 81 | + |
| 82 | + for (int[] interval : intervals) { |
| 83 | + if (!inserted && interval[0] > newInterval[1]) { |
| 84 | + result.add(newInterval); |
| 85 | + inserted = true; |
| 86 | + } |
| 87 | + |
| 88 | + if (inserted || interval[1] < newInterval[0]) { |
| 89 | + result.add(interval); |
| 90 | + } else { |
| 91 | + newInterval[0] = Math.min(newInterval[0], interval[0]); |
| 92 | + newInterval[1] = Math.max(newInterval[1], interval[1]); |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + if (!inserted) { |
| 97 | + result.add(newInterval); |
| 98 | + } |
| 99 | + |
| 100 | + return result.toArray(new int[result.size()][]); |
| 101 | + } |
| 102 | +} |
| 103 | + |
| 104 | +// Alternative approach using iterative |
| 105 | +class SolutionIterative { |
| 106 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 107 | + List<int[]> result = new ArrayList<>(); |
| 108 | + |
| 109 | + int i = 0; |
| 110 | + while (i < intervals.length && intervals[i][1] < newInterval[0]) { |
| 111 | + result.add(intervals[i]); |
| 112 | + i++; |
| 113 | + } |
| 114 | + |
| 115 | + while (i < intervals.length && intervals[i][0] <= newInterval[1]) { |
| 116 | + newInterval[0] = Math.min(newInterval[0], intervals[i][0]); |
| 117 | + newInterval[1] = Math.max(newInterval[1], intervals[i][1]); |
| 118 | + i++; |
| 119 | + } |
| 120 | + result.add(newInterval); |
| 121 | + |
| 122 | + while (i < intervals.length) { |
| 123 | + result.add(intervals[i]); |
| 124 | + i++; |
| 125 | + } |
| 126 | + |
| 127 | + return result.toArray(new int[result.size()][]); |
| 128 | + } |
| 129 | +} |
| 130 | + |
| 131 | +// Alternative approach using while loop |
| 132 | +class SolutionWhileLoop { |
| 133 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 134 | + List<int[]> result = new ArrayList<>(); |
| 135 | + |
| 136 | + int i = 0; |
| 137 | + while (i < intervals.length && intervals[i][1] < newInterval[0]) { |
| 138 | + result.add(intervals[i]); |
| 139 | + i++; |
| 140 | + } |
| 141 | + |
| 142 | + while (i < intervals.length && intervals[i][0] <= newInterval[1]) { |
| 143 | + newInterval[0] = Math.min(newInterval[0], intervals[i][0]); |
| 144 | + newInterval[1] = Math.max(newInterval[1], intervals[i][1]); |
| 145 | + i++; |
| 146 | + } |
| 147 | + result.add(newInterval); |
| 148 | + |
| 149 | + while (i < intervals.length) { |
| 150 | + result.add(intervals[i]); |
| 151 | + i++; |
| 152 | + } |
| 153 | + |
| 154 | + return result.toArray(new int[result.size()][]); |
| 155 | + } |
| 156 | +} |
| 157 | + |
| 158 | +// Alternative approach using enhanced for loop |
| 159 | +class SolutionEnhancedForLoop { |
| 160 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 161 | + List<int[]> result = new ArrayList<>(); |
| 162 | + boolean inserted = false; |
| 163 | + |
| 164 | + for (int[] interval : intervals) { |
| 165 | + if (!inserted && interval[0] > newInterval[1]) { |
| 166 | + result.add(newInterval); |
| 167 | + inserted = true; |
| 168 | + } |
| 169 | + |
| 170 | + if (inserted || interval[1] < newInterval[0]) { |
| 171 | + result.add(interval); |
| 172 | + } else { |
| 173 | + newInterval[0] = Math.min(newInterval[0], interval[0]); |
| 174 | + newInterval[1] = Math.max(newInterval[1], interval[1]); |
| 175 | + } |
| 176 | + } |
| 177 | + |
| 178 | + if (!inserted) { |
| 179 | + result.add(newInterval); |
| 180 | + } |
| 181 | + |
| 182 | + return result.toArray(new int[result.size()][]); |
| 183 | + } |
| 184 | +} |
| 185 | + |
| 186 | +// More concise version |
| 187 | +class SolutionConcise { |
| 188 | + public int[][] insert(int[][] intervals, int[] newInterval) { |
| 189 | + List<int[]> result = new ArrayList<>(); |
| 190 | + int i = 0; |
| 191 | + |
| 192 | + while (i < intervals.length && intervals[i][1] < newInterval[0]) { |
| 193 | + result.add(intervals[i++]); |
| 194 | + } |
| 195 | + |
| 196 | + while (i < intervals.length && intervals[i][0] <= newInterval[1]) { |
| 197 | + newInterval[0] = Math.min(newInterval[0], intervals[i][0]); |
| 198 | + newInterval[1] = Math.max(newInterval[1], intervals[i][1]); |
| 199 | + i++; |
| 200 | + } |
| 201 | + result.add(newInterval); |
| 202 | + |
| 203 | + while (i < intervals.length) { |
| 204 | + result.add(intervals[i++]); |
| 205 | + } |
| 206 | + |
| 207 | + return result.toArray(new int[result.size()][]); |
| 208 | + } |
| 209 | +} |
0 commit comments