Skip to content

Commit 52fd0a9

Browse files
feat: add Rotate Image explanation
- Transpose + reverse algorithm approach - Comprehensive problem analysis - Multiple approaches and optimizations - Edge cases and applications
1 parent e59cf58 commit 52fd0a9

File tree

1 file changed

+75
-0
lines changed

1 file changed

+75
-0
lines changed
Lines changed: 75 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
# Rotate Image
2+
3+
## Problem Statement
4+
5+
You are given an `n x n` 2D `matrix` representing an image, rotate the image by 90 degrees (clockwise).
6+
7+
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
8+
9+
## Examples
10+
11+
**Example 1:**
12+
```
13+
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
14+
Output: [[7,4,1],[8,5,2],[9,6,3]]
15+
```
16+
17+
## Approach
18+
19+
### Method 1: Transpose + Reverse (Recommended)
20+
1. Transpose the matrix (swap rows and columns)
21+
2. Reverse each row
22+
3. Most efficient approach
23+
24+
**Time Complexity:** O(n²) - Two passes
25+
**Space Complexity:** O(1) - In-place modification
26+
27+
### Method 2: Layer by Layer Rotation
28+
1. Rotate matrix layer by layer
29+
2. Use four-way swap for each layer
30+
3. Less efficient than transpose approach
31+
32+
**Time Complexity:** O(n²) - Two passes
33+
**Space Complexity:** O(1) - In-place modification
34+
35+
## Algorithm
36+
37+
```
38+
1. Transpose matrix: matrix[i][j] = matrix[j][i]
39+
2. Reverse each row: matrix[i][j] = matrix[i][n-1-j]
40+
```
41+
42+
## Key Insights
43+
44+
- **Transpose**: Swap rows and columns
45+
- **Reverse**: Reverse each row after transpose
46+
- **Local Optimum**: Efficient matrix transformation
47+
- **Global Optimum**: 90-degree clockwise rotation
48+
49+
## Alternative Approaches
50+
51+
1. **Layer by Layer**: Rotate layer by layer
52+
2. **Four-way Swap**: Use four-way swap for each element
53+
3. **Brute Force**: Create new matrix and copy
54+
55+
## Edge Cases
56+
57+
- Single element: Return as is
58+
- 2x2 matrix: Handle appropriately
59+
- Large matrix: Handle efficiently
60+
- Empty matrix: Return empty matrix
61+
62+
## Applications
63+
64+
- Matrix algorithms
65+
- Image processing
66+
- Algorithm design patterns
67+
- Interview preparation
68+
- System design
69+
70+
## Optimization Opportunities
71+
72+
- **Transpose + Reverse**: Most efficient approach
73+
- **Space Optimization**: O(1) space complexity
74+
- **Quadratic Time**: O(n²) time complexity
75+
- **No Extra Space**: Use only necessary space

0 commit comments

Comments
 (0)