Skip to content

Commit 4d3bbc8

Browse files
feat: add Meeting Rooms II explanation
- Min heap algorithm approach - Comprehensive problem analysis - Multiple approaches and optimizations - Edge cases and applications
1 parent f921778 commit 4d3bbc8

File tree

1 file changed

+79
-0
lines changed

1 file changed

+79
-0
lines changed
Lines changed: 79 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,79 @@
1+
# Meeting Rooms II
2+
3+
## Problem Statement
4+
5+
Given an array of meeting time intervals `intervals` where `intervals[i] = [starti, endi]`, return the minimum number of conference rooms required.
6+
7+
## Examples
8+
9+
**Example 1:**
10+
```
11+
Input: intervals = [[0,30],[5,10],[15,20]]
12+
Output: 2
13+
```
14+
15+
## Approach
16+
17+
### Method 1: Min Heap (Recommended)
18+
1. Sort intervals by start time
19+
2. Use min heap to track end times
20+
3. Remove rooms when meetings end
21+
4. Most efficient approach
22+
23+
**Time Complexity:** O(n log n) - Sorting + Heap operations
24+
**Space Complexity:** O(n) - Heap
25+
26+
### Method 2: Sweep Line Algorithm
27+
1. Use sweep line to process events
28+
2. Track maximum concurrent meetings
29+
3. Less efficient than min heap approach
30+
31+
**Time Complexity:** O(n log n) - Sorting events
32+
**Space Complexity:** O(n) - Event list
33+
34+
## Algorithm
35+
36+
```
37+
1. Sort intervals by start time
38+
2. Initialize min heap
39+
3. For each interval:
40+
a. Remove rooms that have ended
41+
b. Add current meeting to heap
42+
c. Update maximum rooms needed
43+
4. Return maximum rooms
44+
```
45+
46+
## Key Insights
47+
48+
- **Min Heap**: Track end times efficiently
49+
- **Local Optimum**: Remove rooms when meetings end
50+
- **Global Optimum**: Minimum number of rooms needed
51+
- **Space Optimization**: Use only necessary space
52+
53+
## Alternative Approaches
54+
55+
1. **Sweep Line**: Use sweep line algorithm
56+
2. **Two Pointers**: Use two pointers technique
57+
3. **Brute Force**: Check all possible room assignments
58+
59+
## Edge Cases
60+
61+
- Empty intervals: Return 0
62+
- Single interval: Return 1
63+
- No overlaps: Return 1
64+
- All overlaps: Return n
65+
66+
## Applications
67+
68+
- Interval algorithms
69+
- Scheduling problems
70+
- Algorithm design patterns
71+
- Interview preparation
72+
- System design
73+
74+
## Optimization Opportunities
75+
76+
- **Min Heap**: Most efficient approach
77+
- **Space Optimization**: O(n) space complexity
78+
- **Logarithmic Time**: O(n log n) time complexity
79+
- **No Extra Space**: Use only necessary space

0 commit comments

Comments
 (0)