|
| 1 | +# Meeting Rooms II |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +Given an array of meeting time intervals `intervals` where `intervals[i] = [starti, endi]`, return the minimum number of conference rooms required. |
| 6 | + |
| 7 | +## Examples |
| 8 | + |
| 9 | +**Example 1:** |
| 10 | +``` |
| 11 | +Input: intervals = [[0,30],[5,10],[15,20]] |
| 12 | +Output: 2 |
| 13 | +``` |
| 14 | + |
| 15 | +## Approach |
| 16 | + |
| 17 | +### Method 1: Min Heap (Recommended) |
| 18 | +1. Sort intervals by start time |
| 19 | +2. Use min heap to track end times |
| 20 | +3. Remove rooms when meetings end |
| 21 | +4. Most efficient approach |
| 22 | + |
| 23 | +**Time Complexity:** O(n log n) - Sorting + Heap operations |
| 24 | +**Space Complexity:** O(n) - Heap |
| 25 | + |
| 26 | +### Method 2: Sweep Line Algorithm |
| 27 | +1. Use sweep line to process events |
| 28 | +2. Track maximum concurrent meetings |
| 29 | +3. Less efficient than min heap approach |
| 30 | + |
| 31 | +**Time Complexity:** O(n log n) - Sorting events |
| 32 | +**Space Complexity:** O(n) - Event list |
| 33 | + |
| 34 | +## Algorithm |
| 35 | + |
| 36 | +``` |
| 37 | +1. Sort intervals by start time |
| 38 | +2. Initialize min heap |
| 39 | +3. For each interval: |
| 40 | + a. Remove rooms that have ended |
| 41 | + b. Add current meeting to heap |
| 42 | + c. Update maximum rooms needed |
| 43 | +4. Return maximum rooms |
| 44 | +``` |
| 45 | + |
| 46 | +## Key Insights |
| 47 | + |
| 48 | +- **Min Heap**: Track end times efficiently |
| 49 | +- **Local Optimum**: Remove rooms when meetings end |
| 50 | +- **Global Optimum**: Minimum number of rooms needed |
| 51 | +- **Space Optimization**: Use only necessary space |
| 52 | + |
| 53 | +## Alternative Approaches |
| 54 | + |
| 55 | +1. **Sweep Line**: Use sweep line algorithm |
| 56 | +2. **Two Pointers**: Use two pointers technique |
| 57 | +3. **Brute Force**: Check all possible room assignments |
| 58 | + |
| 59 | +## Edge Cases |
| 60 | + |
| 61 | +- Empty intervals: Return 0 |
| 62 | +- Single interval: Return 1 |
| 63 | +- No overlaps: Return 1 |
| 64 | +- All overlaps: Return n |
| 65 | + |
| 66 | +## Applications |
| 67 | + |
| 68 | +- Interval algorithms |
| 69 | +- Scheduling problems |
| 70 | +- Algorithm design patterns |
| 71 | +- Interview preparation |
| 72 | +- System design |
| 73 | + |
| 74 | +## Optimization Opportunities |
| 75 | + |
| 76 | +- **Min Heap**: Most efficient approach |
| 77 | +- **Space Optimization**: O(n) space complexity |
| 78 | +- **Logarithmic Time**: O(n log n) time complexity |
| 79 | +- **No Extra Space**: Use only necessary space |
0 commit comments