|
| 1 | +# Non-overlapping Intervals |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +Given an array of intervals `intervals` where `intervals[i] = [starti, endi]`, return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. |
| 6 | + |
| 7 | +## Examples |
| 8 | + |
| 9 | +**Example 1:** |
| 10 | +``` |
| 11 | +Input: intervals = [[1,2],[2,3],[3,4],[1,3]] |
| 12 | +Output: 1 |
| 13 | +Explanation: [1,3] can be removed and the rest of the intervals are non-overlapping. |
| 14 | +``` |
| 15 | + |
| 16 | +## Approach |
| 17 | + |
| 18 | +### Method 1: Greedy Algorithm (Recommended) |
| 19 | +1. Sort intervals by end time |
| 20 | +2. Use greedy approach to select non-overlapping intervals |
| 21 | +3. Count removed intervals |
| 22 | +4. Most efficient approach |
| 23 | + |
| 24 | +**Time Complexity:** O(n log n) - Sorting |
| 25 | +**Space Complexity:** O(1) - In-place modification |
| 26 | + |
| 27 | +### Method 2: Dynamic Programming |
| 28 | +1. Use DP to find maximum non-overlapping intervals |
| 29 | +2. Return total - maximum |
| 30 | +3. Less efficient than greedy approach |
| 31 | + |
| 32 | +**Time Complexity:** O(n²) - Nested loops |
| 33 | +**Space Complexity:** O(n) - DP array |
| 34 | + |
| 35 | +## Algorithm |
| 36 | + |
| 37 | +``` |
| 38 | +1. Sort intervals by end time |
| 39 | +2. Initialize count = 0, end = intervals[0][1] |
| 40 | +3. For i from 1 to n-1: |
| 41 | + a. If intervals[i][0] < end: count++ |
| 42 | + b. Else: end = intervals[i][1] |
| 43 | +4. Return count |
| 44 | +``` |
| 45 | + |
| 46 | +## Key Insights |
| 47 | + |
| 48 | +- **Greedy Choice**: Always select interval with earliest end time |
| 49 | +- **Local Optimum**: Maximum non-overlapping intervals |
| 50 | +- **Global Optimum**: Minimum intervals to remove |
| 51 | +- **Space Optimization**: Use only necessary space |
| 52 | + |
| 53 | +## Alternative Approaches |
| 54 | + |
| 55 | +1. **Dynamic Programming**: Use DP for maximum intervals |
| 56 | +2. **Sorting by Start**: Sort by start time and use different logic |
| 57 | +3. **Brute Force**: Try all possible combinations |
| 58 | + |
| 59 | +## Edge Cases |
| 60 | + |
| 61 | +- Empty intervals: Return 0 |
| 62 | +- Single interval: Return 0 |
| 63 | +- No overlaps: Return 0 |
| 64 | +- All overlaps: Return n-1 |
| 65 | + |
| 66 | +## Applications |
| 67 | + |
| 68 | +- Interval algorithms |
| 69 | +- Scheduling problems |
| 70 | +- Algorithm design patterns |
| 71 | +- Interview preparation |
| 72 | +- System design |
| 73 | + |
| 74 | +## Optimization Opportunities |
| 75 | + |
| 76 | +- **Greedy Algorithm**: Most efficient approach |
| 77 | +- **Space Optimization**: O(1) space complexity |
| 78 | +- **Logarithmic Time**: O(n log n) time complexity |
| 79 | +- **No Extra Space**: Use only necessary space |
0 commit comments