|
| 1 | +/** |
| 2 | + * Time Complexity: O(n²) - Two passes |
| 3 | + * Space Complexity: O(1) - In-place modification |
| 4 | + */ |
| 5 | +class Solution { |
| 6 | + public void rotate(int[][] matrix) { |
| 7 | + int n = matrix.length; |
| 8 | + |
| 9 | + // Step 1: Transpose the matrix |
| 10 | + for (int i = 0; i < n; i++) { |
| 11 | + for (int j = i; j < n; j++) { |
| 12 | + int temp = matrix[i][j]; |
| 13 | + matrix[i][j] = matrix[j][i]; |
| 14 | + matrix[j][i] = temp; |
| 15 | + } |
| 16 | + } |
| 17 | + |
| 18 | + // Step 2: Reverse each row |
| 19 | + for (int i = 0; i < n; i++) { |
| 20 | + int left = 0, right = n - 1; |
| 21 | + while (left < right) { |
| 22 | + int temp = matrix[i][left]; |
| 23 | + matrix[i][left] = matrix[i][right]; |
| 24 | + matrix[i][right] = temp; |
| 25 | + left++; |
| 26 | + right--; |
| 27 | + } |
| 28 | + } |
| 29 | + } |
| 30 | +} |
| 31 | + |
| 32 | +// Alternative approach using layer by layer rotation |
| 33 | +class SolutionLayerByLayer { |
| 34 | + public void rotate(int[][] matrix) { |
| 35 | + int n = matrix.length; |
| 36 | + |
| 37 | + for (int layer = 0; layer < n / 2; layer++) { |
| 38 | + int first = layer; |
| 39 | + int last = n - 1 - layer; |
| 40 | + |
| 41 | + for (int i = first; i < last; i++) { |
| 42 | + int offset = i - first; |
| 43 | + |
| 44 | + // Save top |
| 45 | + int top = matrix[first][i]; |
| 46 | + |
| 47 | + // Move left to top |
| 48 | + matrix[first][i] = matrix[last - offset][first]; |
| 49 | + |
| 50 | + // Move bottom to left |
| 51 | + matrix[last - offset][first] = matrix[last][last - offset]; |
| 52 | + |
| 53 | + // Move right to bottom |
| 54 | + matrix[last][last - offset] = matrix[i][last]; |
| 55 | + |
| 56 | + // Move top to right |
| 57 | + matrix[i][last] = top; |
| 58 | + } |
| 59 | + } |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +// Alternative approach using four-way swap |
| 64 | +class SolutionFourWaySwap { |
| 65 | + public void rotate(int[][] matrix) { |
| 66 | + int n = matrix.length; |
| 67 | + |
| 68 | + for (int i = 0; i < n / 2; i++) { |
| 69 | + for (int j = i; j < n - 1 - i; j++) { |
| 70 | + int temp = matrix[i][j]; |
| 71 | + matrix[i][j] = matrix[n - 1 - j][i]; |
| 72 | + matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j]; |
| 73 | + matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i]; |
| 74 | + matrix[j][n - 1 - i] = temp; |
| 75 | + } |
| 76 | + } |
| 77 | + } |
| 78 | +} |
| 79 | + |
| 80 | +// Alternative approach using iterative |
| 81 | +class SolutionIterative { |
| 82 | + public void rotate(int[][] matrix) { |
| 83 | + int n = matrix.length; |
| 84 | + |
| 85 | + // Transpose |
| 86 | + for (int i = 0; i < n; i++) { |
| 87 | + for (int j = i; j < n; j++) { |
| 88 | + int temp = matrix[i][j]; |
| 89 | + matrix[i][j] = matrix[j][i]; |
| 90 | + matrix[j][i] = temp; |
| 91 | + } |
| 92 | + } |
| 93 | + |
| 94 | + // Reverse rows |
| 95 | + for (int i = 0; i < n; i++) { |
| 96 | + for (int j = 0; j < n / 2; j++) { |
| 97 | + int temp = matrix[i][j]; |
| 98 | + matrix[i][j] = matrix[i][n - 1 - j]; |
| 99 | + matrix[i][n - 1 - j] = temp; |
| 100 | + } |
| 101 | + } |
| 102 | + } |
| 103 | +} |
| 104 | + |
| 105 | +// Alternative approach using while loop |
| 106 | +class SolutionWhileLoop { |
| 107 | + public void rotate(int[][] matrix) { |
| 108 | + int n = matrix.length; |
| 109 | + |
| 110 | + // Transpose |
| 111 | + for (int i = 0; i < n; i++) { |
| 112 | + for (int j = i; j < n; j++) { |
| 113 | + int temp = matrix[i][j]; |
| 114 | + matrix[i][j] = matrix[j][i]; |
| 115 | + matrix[j][i] = temp; |
| 116 | + } |
| 117 | + } |
| 118 | + |
| 119 | + // Reverse rows |
| 120 | + for (int i = 0; i < n; i++) { |
| 121 | + int left = 0, right = n - 1; |
| 122 | + while (left < right) { |
| 123 | + int temp = matrix[i][left]; |
| 124 | + matrix[i][left] = matrix[i][right]; |
| 125 | + matrix[i][right] = temp; |
| 126 | + left++; |
| 127 | + right--; |
| 128 | + } |
| 129 | + } |
| 130 | + } |
| 131 | +} |
| 132 | + |
| 133 | +// Alternative approach using enhanced for loop |
| 134 | +class SolutionEnhancedForLoop { |
| 135 | + public void rotate(int[][] matrix) { |
| 136 | + int n = matrix.length; |
| 137 | + |
| 138 | + // Transpose |
| 139 | + for (int i = 0; i < n; i++) { |
| 140 | + for (int j = i; j < n; j++) { |
| 141 | + int temp = matrix[i][j]; |
| 142 | + matrix[i][j] = matrix[j][i]; |
| 143 | + matrix[j][i] = temp; |
| 144 | + } |
| 145 | + } |
| 146 | + |
| 147 | + // Reverse rows |
| 148 | + for (int i = 0; i < n; i++) { |
| 149 | + int left = 0, right = n - 1; |
| 150 | + while (left < right) { |
| 151 | + int temp = matrix[i][left]; |
| 152 | + matrix[i][left] = matrix[i][right]; |
| 153 | + matrix[i][right] = temp; |
| 154 | + left++; |
| 155 | + right--; |
| 156 | + } |
| 157 | + } |
| 158 | + } |
| 159 | +} |
| 160 | + |
| 161 | +// More concise version |
| 162 | +class SolutionConcise { |
| 163 | + public void rotate(int[][] matrix) { |
| 164 | + int n = matrix.length; |
| 165 | + |
| 166 | + // Transpose |
| 167 | + for (int i = 0; i < n; i++) { |
| 168 | + for (int j = i; j < n; j++) { |
| 169 | + int temp = matrix[i][j]; |
| 170 | + matrix[i][j] = matrix[j][i]; |
| 171 | + matrix[j][i] = temp; |
| 172 | + } |
| 173 | + } |
| 174 | + |
| 175 | + // Reverse rows |
| 176 | + for (int i = 0; i < n; i++) { |
| 177 | + int left = 0, right = n - 1; |
| 178 | + while (left < right) { |
| 179 | + int temp = matrix[i][left]; |
| 180 | + matrix[i][left] = matrix[i][right]; |
| 181 | + matrix[i][right] = temp; |
| 182 | + left++; |
| 183 | + right--; |
| 184 | + } |
| 185 | + } |
| 186 | + } |
| 187 | +} |
0 commit comments