|
| 1 | +# Single Number |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +Given a non-empty array of integers `nums`, every element appears twice except for one. Find that single one. |
| 6 | + |
| 7 | +You must implement a solution with a linear runtime complexity and use only constant extra space. |
| 8 | + |
| 9 | +## Examples |
| 10 | + |
| 11 | +**Example 1:** |
| 12 | +``` |
| 13 | +Input: nums = [2,2,1] |
| 14 | +Output: 1 |
| 15 | +``` |
| 16 | + |
| 17 | +## Approach |
| 18 | + |
| 19 | +### Method 1: XOR Operation (Recommended) |
| 20 | +1. Use XOR properties: a ^ a = 0, a ^ 0 = a |
| 21 | +2. XOR all elements in the array |
| 22 | +3. Result is the single number |
| 23 | +4. Most efficient approach |
| 24 | + |
| 25 | +**Time Complexity:** O(n) - Single pass |
| 26 | +**Space Complexity:** O(1) - No extra space |
| 27 | + |
| 28 | +### Method 2: Hash Set |
| 29 | +1. Use hash set to track seen numbers |
| 30 | +2. Remove when seen twice |
| 31 | +3. Less efficient than XOR approach |
| 32 | + |
| 33 | +**Time Complexity:** O(n) - Single pass |
| 34 | +**Space Complexity:** O(n) - Hash set |
| 35 | + |
| 36 | +## Algorithm |
| 37 | + |
| 38 | +``` |
| 39 | +1. Initialize result = 0 |
| 40 | +2. For each num in nums: |
| 41 | + a. result = result ^ num |
| 42 | +3. Return result |
| 43 | +``` |
| 44 | + |
| 45 | +## Key Insights |
| 46 | + |
| 47 | +- **XOR Properties**: a ^ a = 0, a ^ 0 = a |
| 48 | +- **Local Optimum**: XOR all elements efficiently |
| 49 | +- **Global Optimum**: Find single number |
| 50 | +- **Space Optimization**: Use only necessary space |
| 51 | + |
| 52 | +## Alternative Approaches |
| 53 | + |
| 54 | +1. **Hash Set**: Use hash set for tracking |
| 55 | +2. **Mathematical**: Use sum properties |
| 56 | +3. **Sorting**: Sort and find single number |
| 57 | + |
| 58 | +## Edge Cases |
| 59 | + |
| 60 | +- Single element: Return that element |
| 61 | +- Two elements: Return the single one |
| 62 | +- Large arrays: Handle efficiently |
| 63 | +- Negative numbers: Handle appropriately |
| 64 | + |
| 65 | +## Applications |
| 66 | + |
| 67 | +- Bit manipulation |
| 68 | +- Array algorithms |
| 69 | +- Algorithm design patterns |
| 70 | +- Interview preparation |
| 71 | +- System design |
| 72 | + |
| 73 | +## Optimization Opportunities |
| 74 | + |
| 75 | +- **XOR Operation**: Most efficient approach |
| 76 | +- **Space Optimization**: O(1) space complexity |
| 77 | +- **Linear Time**: O(n) time complexity |
| 78 | +- **No Extra Space**: Use only necessary space |
0 commit comments