-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
233 lines (186 loc) · 6.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
'''Some helper functions for PyTorch, including:
- get_mean_and_std: calculate the mean and std value of dataset.
- msr_init: net parameter initialization.
- progress_bar: progress bar mimic xlua.progress.
'''
import os
import sys
import time
import math
import json
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
# _, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width)
term_width = 5
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
class LabelDict():
def __init__(self, dataset='cifar-10'):
self.dataset = dataset
if dataset == 'cifar-10':
self.label_dict = {0: 'airplane', 1: 'automobile', 2: 'bird', 3: 'cat',
4: 'deer', 5: 'dog', 6: 'frog', 7: 'horse',
8: 'ship', 9: 'truck'}
self.class_dict = {v: k for k, v in self.label_dict.items()}
def label2class(self, label):
assert label in self.label_dict, 'the label %d is not in %s' % (label, self.dataset)
return self.label_dict[label]
def class2label(self, _class):
assert isinstance(_class, str)
assert _class in self.class_dict, 'the class %s is not in %s' % (_class, self.dataset)
return self.class_dict[_class]
def list2cuda(_list):
array = np.array(_list)
return numpy2cuda(array)
def numpy2cuda(array):
tensor = torch.from_numpy(array)
return tensor2cuda(tensor)
def tensor2cuda(tensor):
if torch.cuda.is_available():
tensor = tensor.cuda()
return tensor
def one_hot(ids, n_class):
# ---------------------
# author:ke1th
# source:CSDN
# artical:https://blog.csdn.net/u012436149/article/details/77017832
b"""
ids: (list, ndarray) shape:[batch_size]
out_tensor:FloatTensor shape:[batch_size, depth]
"""
assert len(ids.shape) == 1, 'the ids should be 1-D'
# ids = torch.LongTensor(ids).view(-1,1)
out_tensor = torch.zeros(len(ids), n_class)
out_tensor.scatter_(1, ids.cpu().unsqueeze(1), 1.)
return out_tensor
def evaluate(_input, _target, method='mean'):
correct = (_input == _target).astype(np.float32)
if method == 'mean':
return correct.mean()
else:
return correct.sum()
def create_logger(save_path='', file_type='', level='debug'):
if level == 'debug':
_level = logging.DEBUG
elif level == 'info':
_level = logging.INFO
logger = logging.getLogger()
logger.setLevel(_level)
cs = logging.StreamHandler()
cs.setLevel(_level)
logger.addHandler(cs)
if save_path != '':
file_name = os.path.join(save_path, file_type + '_log.txt')
fh = logging.FileHandler(file_name, mode='w')
fh.setLevel(_level)
logger.addHandler(fh)
return logger
def makedirs(path):
if not os.path.exists(path):
os.makedirs(path)
def load_model(model, file_name):
model.load_state_dict(
torch.load(file_name, map_location=lambda storage, loc: storage))
def save_model(model, file_name):
torch.save(model.state_dict(), file_name)
def count_parameters(model):
# copy from https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325/8
# baldassarre.fe's reply
return sum(p.numel() for p in model.parameters() if p.requires_grad)