|
| 1 | +import argparse |
| 2 | +import torch.nn.functional as F |
| 3 | +from datautils import MyTrainDataset |
| 4 | +from torch.nn import Linear |
| 5 | +from torch.optim import SGD |
| 6 | +from torch.utils.data import DataLoader |
| 7 | + |
| 8 | + |
| 9 | +def get_train_objs(batch_size, learning_rate): |
| 10 | + dataset = MyTrainDataset(2048) |
| 11 | + dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, pin_memory=True) |
| 12 | + model = Linear(20, 1) |
| 13 | + optimizer = SGD(model.parameters(), lr=learning_rate) |
| 14 | + return dataloader, model, optimizer |
| 15 | + |
| 16 | + |
| 17 | +class Trainer: |
| 18 | + def __init__(self, gpu_id, dataloader, model, optimizer, total_epochs, save_every): |
| 19 | + self.gpu_id = gpu_id |
| 20 | + self.dataloader = dataloader |
| 21 | + self.model = model.to(gpu_id) |
| 22 | + self.optimizer = optimizer |
| 23 | + self.total_epochs = total_epochs |
| 24 | + self.save_every = save_every |
| 25 | + |
| 26 | + def _run_batch(self, source, target): |
| 27 | + self.optimizer.zero_grad() |
| 28 | + output = self.model(source) |
| 29 | + loss = F.cross_entropy(output, target) |
| 30 | + loss.backward() |
| 31 | + self.optimizer.step() |
| 32 | + |
| 33 | + def _run_epoch(self, epoch_id): |
| 34 | + for batch_id, (source, target) in enumerate(self.dataloader): |
| 35 | + source = source.to(self.gpu_id) |
| 36 | + target = target.to(self.gpu_id) |
| 37 | + self._run_batch(source, target) |
| 38 | + |
| 39 | + print(f"device {self.gpu_id}, epoch {epoch_id}/{self.total_epochs}, batch {batch_id}/{len(self.dataloader)}") |
| 40 | + |
| 41 | + def train(self): |
| 42 | + for epoch_id in range(self.total_epochs): |
| 43 | + self._run_epoch(epoch_id) |
| 44 | + |
| 45 | + |
| 46 | +def main(gpu_id, batch_size, learning_rate, total_epochs, save_every): |
| 47 | + dataloader, model, optimizer = get_train_objs(batch_size, learning_rate) |
| 48 | + trainer = Trainer(gpu_id, dataloader, model, optimizer, total_epochs, save_every) |
| 49 | + trainer.train() |
| 50 | + |
| 51 | + |
| 52 | +if __name__ == "__main__": |
| 53 | + parser = argparse.ArgumentParser(description='simple distributed training job') |
| 54 | + parser.add_argument('-b', '--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') |
| 55 | + parser.add_argument('-l', '--learning_rate', default=1e-3, type=float, help='Learning rate of the optimizer (default" 1e-3)') |
| 56 | + parser.add_argument('-t', '--total_epochs', default=2, type=int, help='Total epochs to train the model (default: 2)') |
| 57 | + parser.add_argument('-s', '--save_every', default=2, type=int, help='How often to save a snapshot (default: 2)') |
| 58 | + args = parser.parse_args() |
| 59 | + |
| 60 | + gpu_id = 0 |
| 61 | + main(gpu_id, args.batch_size, args.learning_rate, args.total_epochs, args.save_every) |
0 commit comments