-
Notifications
You must be signed in to change notification settings - Fork 331
/
Copy pathtest_samplers.py
224 lines (171 loc) · 7.11 KB
/
test_samplers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
from functools import partial
import numpy as np
import pytest
from hypothesis import given
from hypothesis.strategies import integers, text
from eli5.lime.samplers import (
MaskingTextSampler,
MaskingTextSamplers,
UnivariateKernelDensitySampler,
MultivariateKernelDensitySampler
)
from sklearn.neighbors import KernelDensity
@pytest.mark.parametrize(["bow"], [[True], [False]])
@given(text=text(), n_samples=integers(1, 3))
def test_masking_text_sampler_length(text, n_samples, bow):
sampler = MaskingTextSampler(bow=bow)
sampler.fit([text])
samples, sims = sampler.sample_near(text, n_samples=n_samples)
assert len(samples) == n_samples
assert sims.shape == (n_samples,)
assert all(len(s) <= len(text) for s in samples)
def test_masking_text_sampler_bow():
sampler = MaskingTextSampler(bow=True)
samples, sims = sampler.sample_near('foo bar bar baz', n_samples=10000)
assert 'foo bar bar ' in samples
assert ' bar bar ' in samples
assert ' bar ' not in samples
assert ' bar bar baz' in samples
assert 'foo bar bar baz' not in samples
assert ' ' in samples
assert 'foo bar baz' not in samples
assert 'foo bar baz' not in samples
def test_masking_text_sampler_union():
sampler = MaskingTextSamplers([
dict(bow=False),
dict(bow=True),
], random_state=42)
samples, sims = sampler.sample_near('foo bar bar baz', n_samples=10000)
assert 'foo bar bar baz' not in samples
assert 'foo bar bar ' in samples
assert ' bar bar ' in samples
assert ' bar ' in samples
assert ' bar bar baz' in samples
assert ' ' in samples
assert 'foo bar baz' in samples
assert 'foo bar baz' in samples
def test_masking_text_sampler():
sampler = MaskingTextSampler(bow=False)
samples, sims = sampler.sample_near('foo bar bar baz', n_samples=10000)
assert 'foo bar bar ' in samples
assert 'foo bar baz' in samples
assert 'foo bar bar baz' not in samples
assert ' ' in samples
def test_masking_text_sampler_ratios():
sampler = MaskingTextSampler(min_replace=2)
samples, sims = sampler.sample_near('foo bar baz', n_samples=100)
assert {s.strip() for s in samples} == {'foo', 'bar', 'baz', ''}
sampler = MaskingTextSampler(max_replace=1)
samples, sims = sampler.sample_near('foo bar baz', n_samples=100)
assert {s.strip() for s in samples} == {'foo bar', 'foo baz', 'bar baz'}
sampler = MaskingTextSampler(max_replace=0.3) # should be 1
samples, sims = sampler.sample_near('foo bar baz', n_samples=100)
assert {s.strip() for s in samples} == {'foo bar', 'foo baz', 'bar baz'}
sampler = MaskingTextSampler(min_replace=0.9) # should be 2
samples, sims = sampler.sample_near('foo bar baz', n_samples=100)
assert {s.strip() for s in samples} == {'foo', 'bar', 'baz', ''}
def test_masking_samplers_random_state():
params = [{'bow': True}, {'bow': False}]
s1 = MaskingTextSamplers(params, random_state=42)
s2 = MaskingTextSamplers(params, random_state=42)
s3 = MaskingTextSamplers(params, random_state=24)
doc = 'foo bar baz egg spam egg spam'
samples1, _ = s1.sample_near(doc, n_samples=50)
samples2, _ = s2.sample_near(doc, n_samples=50)
samples3, _ = s3.sample_near(doc, n_samples=50)
assert samples1 == samples2
assert samples1 != samples3
def test_univariate_kde_sampler():
feat1 = np.random.normal(size=100)
feat2 = np.random.randint(0, 2, size=100)
X = np.array([feat1, feat2]).T
s = UnivariateKernelDensitySampler(random_state=42)
s.fit(X)
# second feature is categorical, it should use a small bandwidth
assert np.isclose(s.kdes_[1].bandwidth, 1e-6)
# check sampling results
samples, sims = s.sample_near([0.1, 1], n_samples=1000)
feat1_sampled = samples[:, 0]
feat2_sampled = samples[:, 1]
_isclose = partial(np.isclose, atol=1e-5)
# feat2 should have both 0 and 1 values, and it should have more 1 values
# because document has 1 as a second feature
zeros = _isclose(feat2_sampled, 0)
ones = _isclose(feat2_sampled, 1)
assert (zeros | ones).sum() == 1000
assert 0.5 < feat2_sampled.mean() < 0.9
assert zeros.sum() > 100
assert ones.sum() > 500
# feat1 should be centered around zero
assert -1 < feat1_sampled.mean() < 1
def test_multivariate_kde_sampler():
feat1 = np.random.normal(size=500)
feat2 = feat1 * 2 + np.random.normal(size=500) * 0.01
X = np.array([feat1, feat2]).T
s = MultivariateKernelDensitySampler(random_state=42)
s.fit(X)
# no extreme bandwidths
assert 0.01 < s.kde_.bandwidth < 5
# check sampling results
X_sampled, sims = s.sample_near(X[0], 1000)
feat1_sampled = X_sampled[:, 0]
feat2_sampled = X_sampled[:, 1]
# feature interaction should be preserved
assert abs((feat1_sampled * 2 - feat2_sampled).mean()) < 0.05
def test_bad_argument():
with pytest.raises(ValueError):
s = MultivariateKernelDensitySampler(sigma='foo')
@pytest.mark.parametrize(['sampler_cls'], [
[MultivariateKernelDensitySampler],
[UnivariateKernelDensitySampler]
])
def test_explicit_sigma(sampler_cls):
X = np.array([[0, 1], [1, 1], [0, 2]])
s = sampler_cls(sigma=0.5)
s.fit(X)
assert s.sigma == 0.5
assert s.sigma_ == 0.5
def test_sigma_bandwidth():
s = MultivariateKernelDensitySampler(sigma='bandwidth')
s.fit([[0, 1], [1, 1], [0, 2]])
assert s.sigma_ == s.kde_.bandwidth
def test_fit_bandwidth():
kde = KernelDensity(bandwidth=100, leaf_size=10)
s = MultivariateKernelDensitySampler(kde=kde, fit_bandwidth=True)
s.fit([[0, 1], [1, 1], [0, 2]])
assert s.kde_.bandwidth != kde.bandwidth
assert s.kde_.leaf_size == kde.leaf_size
s = MultivariateKernelDensitySampler(kde=kde, fit_bandwidth=False)
s.fit([[0, 1], [1, 1], [0, 2]])
assert s.kde_.bandwidth == kde.bandwidth
assert s.kde_.leaf_size == kde.leaf_size
@pytest.mark.parametrize(['sampler_cls', 'doc'], [
[MultivariateKernelDensitySampler, [0, 1]],
[UnivariateKernelDensitySampler, [0, 1]],
[MaskingTextSampler, 'foo bar baz egg spam']
])
def test_random_state(sampler_cls, doc):
def _create_sampler(*args, **kwargs):
X = np.array([[0, 1], [1, 1], [0, 2], [1, 3], [1, 4]])
s = sampler_cls(*args, **kwargs)
if hasattr(s, 'fit'):
s.fit(X)
return s
def _sample(sampler):
samples0, sim0 = sampler.sample_near(doc, n_samples=1)
samples1, sim1 = sampler.sample_near(doc, n_samples=1)
samples, sim = sampler.sample_near(doc, n_samples=1000)
# random state should change between calls
assert not np.array_equal(samples0, samples1)
return samples
s1 = _create_sampler(random_state=42)
s2 = _create_sampler(random_state=42)
s3 = _create_sampler(random_state=24)
samples1 = _sample(s1)
samples2 = _sample(s2)
samples3 = _sample(s3)
# samples must be the same for all instances with the same random state
assert np.array_equal(samples1, samples2)
# if random state changes, samples should change
assert not np.array_equal(samples1, samples3)