-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
323 lines (261 loc) · 12.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import numpy as np
import scipy.sparse as sp
from sklearn.model_selection import train_test_split
from scipy.sparse.csgraph import connected_components
import torch
import torch.nn.functional as F
import random
np_load_old = np.load
np.aload = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
class EarlyStop_loss:
def __init__(self, patience=3):
self.patience = patience
self.counter = 0
self.best_score = None
self.early_stop = False
def step(self, acc, model, file):
score = acc
if self.best_score is None:
self.best_score = score
self.save_checkpoint(model,file)
elif np.isnan(score):
print('Loss is Nan')
self.early_stop = True
elif score >= self.best_score:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(model,file)
self.counter = 0
return self.early_stop
def save_checkpoint(self, model, file):
'''Saves model when validation loss decrease.'''
torch.save(model.state_dict(), file+'_checkpoint.pt',_use_new_zipfile_serialization=False)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# --------------------- Load data ----------------------
def load_npz(file_name):
"""Load a SparseGraph from a Numpy binary file.
Parameters
----------
file_name : str
Name of the file to load.
Returns
-------
sparse_graph : gust.SparseGraph
Graph in sparse matrix format.
"""
if not file_name.endswith('.npz'):
file_name += '.npz'
with np.aload(file_name) as loader:
loader = dict(loader)
adj_matrix = sp.csr_matrix((loader['adj_data'], loader['adj_indices'],
loader['adj_indptr']), shape=loader['adj_shape'])
if 'attr_data' in loader:
attr_matrix = sp.csr_matrix((loader['attr_data'], loader['attr_indices'],
loader['attr_indptr']), shape=loader['attr_shape'])
else:
attr_matrix = None
labels = loader.get('labels')
return adj_matrix, attr_matrix, labels
def largest_connected_components(adj, n_components=1):
_, component_indices = connected_components(adj)
component_sizes = np.bincount(component_indices)
components_to_keep = np.argsort(component_sizes)[::-1][:n_components] # reverse order to sort descending
nodes_to_keep = [
idx for (idx, component) in enumerate(component_indices) if component in components_to_keep
]
print("Selecting {0} largest connected components".format(n_components))
return nodes_to_keep
# ------------------------ Normalize -----------------------
# D^(-0.5) * A * D^(-0.5)
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -0.5).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
mx = mx.dot(r_mat_inv)
return mx
def normalize_tensor(sp_adj_tensor,edges=None, sub_graph_nodes=None,sp_degree=None):
edge_index = sp_adj_tensor.coalesce().indices()
edge_weight = sp_adj_tensor.coalesce().values()
shape = sp_adj_tensor.shape
num_nodes= sp_adj_tensor.size(0)
row, col = edge_index
if sp_degree is None:
# print('None')
deg = torch.sparse.sum(sp_adj_tensor,1).to_dense().flatten()
else:
# print('sp')
deg = sp_degree
for i in range(len(edges)):
idx = sub_graph_nodes[0,i]
deg[idx] = deg[idx] + edges[i]
last_deg = torch.sparse.sum(sp_adj_tensor[-1]).unsqueeze(0).data
deg = torch.cat((deg,last_deg))
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
values = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
# print('nor adj values:', values.shape)
# print('index:',edge_index.shape)
# print('shape:', shape)
nor_adj_tensor = torch.sparse.FloatTensor(edge_index, values, shape)
del edge_index, edge_weight, values, deg_inv_sqrt
return nor_adj_tensor
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
# --------------------------------- Sub-graph ------------------------
def k_order_nei(adj, k, target):
for i in range(k):
if i == 0:
one_order_nei = adj[target].nonzero()[1]
sub_graph_nodes = one_order_nei
else:
sub_graph_nodes = np.unique(adj[sub_graph_nodes].nonzero()[1])
sub_tar = np.where(sub_graph_nodes==target)[0]
sub_idx = np.where(np.in1d(sub_graph_nodes, one_order_nei))[0]
return one_order_nei, sub_graph_nodes, sub_tar, sub_idx
def sub_graph_tensor(two_order_nei, feat, adj, normadj, device):
sub_feat = feat[two_order_nei]
sub_adj = adj[two_order_nei][:, two_order_nei]
sub_nor_adj = normadj[two_order_nei][:, two_order_nei]
sub_adj_tensor = sparse_mx_to_torch_sparse_tensor(sub_adj).to(device)
sub_nor_adj_tensor = sparse_mx_to_torch_sparse_tensor(sub_nor_adj).to(device)
return sub_feat, sub_adj_tensor, sub_nor_adj_tensor
# -------------------------------------- After Attack ----------------------------------
def gen_new_adj_tensor(adj_tensor, edges, sub_graph_nodes, device):
# sparse tensor
n = adj_tensor.shape[0]
edge_idx = sub_graph_nodes
sub_mask_shape = edge_idx.shape[1]
extend_i0 = torch.cat((n*torch.ones(sub_mask_shape).unsqueeze(0).long(), edge_idx), 0)
extend_i1 = torch.cat((edge_idx, n*torch.ones(sub_mask_shape).unsqueeze(0).long()), 0)
extend_i = torch.cat((extend_i0, extend_i1, torch.LongTensor([[n],[n]])), 1).to(device)
add_one = torch.ones(1).to(device)
extend_v = torch.cat((edges, edges, add_one),0)
i = adj_tensor._indices()
v = adj_tensor._values()
new_i = torch.cat([i, extend_i], 1)
new_v = torch.cat([v, extend_v], 0)
new_adj_tensor = torch.sparse.FloatTensor(new_i, new_v, torch.Size([n+1,n+1]))
return new_adj_tensor
def block_spmm(ori_adj_tensor, inj_adj_tensor_row, inj_adj_tensor_col, inj_adj_tensor_one, ori_feat, inj_feat, W):
if inj_feat.dim() == 1:
inj_feat = inj_feat.unsqueeze(0)
ori_xw = torch.mm(ori_feat, W)
inj_xw = torch.mm(inj_feat, W)
ori_adj_ori_xw = torch.sparse.mm(ori_adj_tensor, ori_xw)
injrow_adj_ori_xw = torch.sparse.mm(inj_adj_tensor_row, ori_xw)
injcol_adj_inj_xw = torch.sparse.mm(inj_adj_tensor_col, inj_xw)
inj_adj_inj_xw = torch.sparse.mm(inj_adj_tensor_one, inj_xw)
ori_emb = ori_adj_ori_xw + injcol_adj_inj_xw
inj_emb = injrow_adj_ori_xw + inj_adj_inj_xw
return ori_emb, inj_emb
def approximate_evaluate_res(degree, ori_adj_tensor, ori_feat, edges, edge_idx, inj_feat, W1, W2, budget, device):
# inject adj tensor
n = ori_adj_tensor.shape[0]
zeros = torch.zeros(edge_idx.shape).long()
extend_i_row = torch.cat((zeros, edge_idx), 0).to(device)
extend_i_col = torch.cat((edge_idx, zeros), 0).to(device)
r_inv = np.power(budget + 1, -0.5)
edge_idx_0 = edge_idx[0]
sub_d = degree[edge_idx_0] + 1
sub_d_inv = torch.pow(sub_d, -0.5)
extend_v = sub_d_inv * edges * r_inv
add_one = torch.FloatTensor([r_inv*r_inv])
inj_adj_tensor_row = torch.sparse.FloatTensor(extend_i_row, extend_v, torch.Size([1, n]))
inj_adj_tensor_col = torch.sparse.FloatTensor(extend_i_col, extend_v, torch.Size([n, 1]))
inj_adj_tensor_one = torch.sparse.FloatTensor(torch.LongTensor([[0],[0]]), add_one, torch.Size([1, 1])).to(device)
ori_emb1, inj_emb1 = block_spmm(ori_adj_tensor, inj_adj_tensor_row, inj_adj_tensor_col, inj_adj_tensor_one, ori_feat, inj_feat, W1)
ori_emb1 = F.relu(ori_emb1)
inj_emb1 = F.relu(inj_emb1)
ori_emb2, inj_emb2 = block_spmm(ori_adj_tensor, inj_adj_tensor_row, inj_adj_tensor_col, inj_adj_tensor_one, ori_emb1, inj_emb1, W2)
approimate_emb = torch.cat((ori_emb2, inj_emb2))
return approimate_emb
def gen_new_adj_topo_tensor(adj_topo_tensor, edges, sub_graph_nodes, device):
# tensor
n = adj_topo_tensor.shape[0]
new_edge = torch.zeros((1,n)).to(device)
new_edge[0, sub_graph_nodes] = edges
new_adj_topo_tensor = torch.cat((adj_topo_tensor, new_edge),dim=0)
add_one = torch.ones((1,1)).to(device)
new_inj_edge = torch.cat((new_edge, add_one), dim=1)
new_adj_topo_tensor = torch.cat((new_adj_topo_tensor, new_inj_edge.reshape(n+1,1)),dim=1)
return new_adj_topo_tensor
def gen_new_edge_idx(adj_edge_index, disc_score, masked_score_idx, device):
inj_node = adj_edge_index.max() + 1
inj_sub_idx = torch.where(disc_score>=0.9)[0]
inj_edge_idx = masked_score_idx[0,inj_sub_idx].unsqueeze(0)
inj_idx = inj_node.repeat(inj_edge_idx.shape)
pos_inj_edges = torch.cat((inj_idx, inj_idx),dim=0).to(device)
rev_inj_edges = torch.cat((inj_idx, inj_idx),dim=0).to(device)
new_edge_idx = torch.cat((adj_edge_index, pos_inj_edges, rev_inj_edges),dim=1)
return new_edge_idx
# ----------------------------- ACC --------------------------
def worst_case_class(logp, labels_np):
logits_np = logp.cpu().numpy()
max_indx = logits_np.argmax(1)
for i, indx in enumerate(max_indx):
logits_np[i][indx] = np.nan
logits_np[i][labels_np[i]] = np.nan
second_max_indx = np.nanargmax(logits_np, axis=1)
return second_max_indx
def accuracy(logits, labels):
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def train_val_test_split_tabular(arrays, train_size=0.1, val_size=0.1, test_size=0.8, stratify=None, random_state=123):
idx = arrays
idx_train_and_val, idx_test = train_test_split(idx,
random_state=random_state,
train_size=(train_size + val_size),
test_size=test_size,
stratify=stratify)
if stratify is not None:
stratify = stratify[idx_train_and_val]
idx_train, idx_val = train_test_split(idx_train_and_val,
random_state=random_state,
train_size=(train_size / (train_size + val_size)),
test_size=(val_size / (train_size + val_size)),
stratify=stratify)
return idx_train, idx_val, idx_test
# ------------------------------ Multi-targets ------------------------
def obtain_multi_targets(dataset, tar_num, adj, seed=123):
deg = np.array(adj.sum(1)).squeeze()
deg_sort = deg.argsort()
tmp_idx = np.where(deg[deg_sort]>=tar_num)
idx = deg_sort[tmp_idx] # idx contains nodes whose degree are larger than tar_num
candidate = np.arange(adj.shape[0])
real_targets_all = []
for i in idx:
one_order_nei = adj[i].nonzero()[1]
cand_one_order_nei = np.intersect1d(candidate,one_order_nei)
if len(cand_one_order_nei) >= tar_num:
real_targets = np.random.choice(cand_one_order_nei, tar_num, replace=False)
real_targets_all.append(real_targets)
candidate = np.setdiff1d(candidate, real_targets)
real_targets_arr = np.array(real_targets_all)
mask = np.arange(len(real_targets_arr))
train_mask, val_mask, test_mask = train_val_test_split_tabular(mask, train_size=0.64, val_size=0.16, test_size=0.2, random_state=seed)
split={}
split['train'] = train_mask
split['val'] = val_mask
split['test'] = test_mask
np.save('datasets/multargets_'+dataset + '_tarnum' + str(tar_num) + '.npy', real_targets_arr)
np.save('datasets/multargets_'+dataset+ '_tarnum' + str(tar_num) + '_split.npy',split)
return