-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtc_bp.py
215 lines (173 loc) · 6.76 KB
/
tc_bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
https://developer.aliyun.com/article/614411#
"""
import os
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
np.random.seed(2)
def initialize_parameters(n_x, n_h, n_y):
# Input weight matrix of shape (n_x, n_h)
W1 = np.random.randn(n_x, n_h) * 0.01
# Input bias vector of shape (n_h)
b1 = np.zeros((n_h))
# output weight matrix of shape (n_h, n_y, )
W2 = np.random.randn(n_h, n_y) * 0.01
b2 = np.zeros((n_y)) #bias vector of shape (n_y, 1)
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def forward_propagation(X, parameters):
#retrieve intialized parameters from dictionary
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
# Implement Forward Propagation to calculate A2 (probability)
Z1 = np.dot(X, W1) + b1
A1 = np.tanh(Z1) #tanh activation function
Z2 = np.dot(A1, W2) + b2
A2 = 1 / (1 + np.exp(-Z2)) #sigmoid activation function
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
def predict(parameters, X):
# retrieve intialized parameters from dictionary
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
# Implement Forward Propagation to calculate A2 (probability)
Z1 = np.dot(X, W1) + b1
A1 = np.tanh(Z1) # tanh activation function
Z2 = np.dot(A1, W2) + b2
res = 1 / (1 + np.exp(-Z2)) # sigmoid activation function
return res
def compute_cost(A2, Y, parameters):
m = Y.shape[0] # number of training examples
# Retrieve W1 and W2 from parameters
W1 = parameters['W1']
W2 = parameters['W2']
# Compute the cross-entropy cost
logprobs = np.multiply(np.log(A2), Y) + np.multiply(
(1 - Y), np.log(1 - A2))
cost = -np.sum(logprobs) / m
return cost
def backward_propagation(parameters, cache, X, Y):
# Number of training examples
m = X.shape[0]
# First, retrieve W1 and W2 from the dictionary "parameters".
W1 = parameters['W1']
W2 = parameters['W2']
# Retrieve A1 and A2 from dictionary "cache".
A1 = cache['A1']
A2 = cache['A2']
# Backward propagation: calculate dW1, db1, dW2, db2.
dZ2 = A2 - Y
dW2 = (1 / m) * np.dot(A1.T, dZ2)
db2 = (1 / m) * np.sum(dZ2, axis=0, keepdims=True) # 1
dZ1 = np.multiply(np.dot(dZ2, W2.T), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(X.T, dZ1)
db1 = (1 / m) * np.sum(dZ1, axis=0, keepdims=True)
grads = {"dW1": dW1, "db1": db1[0, :], "dW2": dW2, "db2": db2[0, :]}
# for key in grads:
# print(key, grads[key].shape)
return grads
def update_parameters(parameters, grads, learning_rate=1.2):
# Retrieve each parameter from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
# Retrieve each gradient from the dictionary "grads"
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
# Update rule for each parameter
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):
n_x = 2 # layer_sizes(X, Y)[0]
n_y = 1 # layer_sizes(X, Y)[2]
# Initialize parameters, then retrieve W1, b1, W2, b2.
# Inputs: "n_x, n_h, n_y".
# Outputs = "W1, b1, W2, b2, parameters".
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
print("Layer Struct : ", W1.shape, W2.shape)
# Loop (gradient descent)
for i in range(0, num_iterations): # num_iterations
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X, parameters)
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y, parameters)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X, Y)
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads)
# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print("Cost after iteration %i: %f" % (i, cost))
return parameters, n_h
def plot_decision_boundary(parameters, input_x, input_y):
# Set min and max values and give it some padding
x_min, x_max = input_x[:, 0].min() - 0.25, input_x[:, 0].max() + 0.25
y_min, y_max = input_x[:, 1].min() - 0.25, input_x[:, 1].max() + 0.25
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
model = lambda x: predict(parameters, x)
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(input_x[:, 0], input_x[:, 1], c=input_y, cmap=plt.cm.Spectral)
plt.title("Decision Boundary for hidden layer size " + str(6))
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.show()
plt.tight_layout()
plt.close()
return None
def load_iris(show=False):
iris = pd.read_csv('data/iris.csv')
# Create numeric classes for species (0,1,2)
iris.loc[iris['species'] == 'virginica', 'species_id'] = 0
iris.loc[iris['species'] == 'versicolor', 'species_id'] = 1
iris.loc[iris['species'] == 'setosa', 'species_id'] = 2
iris = iris[iris['species_id'] != 2]
# Create Input and Output columns
X = iris[['petal_length', 'petal_width']].values
Y = iris[['species_id']].values
Y = Y.astype('uint8')
if show:
# Make a scatter plot
plt.scatter(X[:, 0], X[:, 1], c=Y[:, 0], s=40, cmap=plt.cm.Spectral)
plt.title("IRIS DATA | Blue - Versicolor, Red - Virginica ")
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.tight_layout()
plt.show()
plt.close()
return X, Y
if __name__ == '__main__':
input_x, input_y = load_iris()
print(input_x.shape, input_y.shape)
parameters, hh = nn_model(input_x,
input_y,
n_h=6,
num_iterations=10000,
print_cost=True)
for key in parameters:
print(key, parameters[key].shape)
plot_decision_boundary(parameters, input_x, input_y)