-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbp_multilayer.py
499 lines (454 loc) · 16.5 KB
/
bp_multilayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""
# neuralnetwork.py
# modified by Robin 2015/03/03
https://www.cnblogs.com/hhh5460/p/4310083.html
"""
import sys
import copy
import random
from math import exp # , pow
import numpy as np
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.linalg import norm, pinv
random.seed(0)
class Layer:
"""
Description
-------
定义各层的结构,包括层号、激活函数、神经元数量、权重和偏置矩阵
"""
def __init__(self, w, b, neural_number, transfer_function, layer_index):
self.layer_index = layer_index
self.transfer_function = transfer_function
self.neural_number = neural_number
self.w = w
self.b = b
class NetStruct:
"""
Description
-------
定义神经网络结构
"""
def __init__(self, ni, nh, no, active_fun_list):
"""
Description
-------
构造神经网络
Parameters
-------
number of input, hidden, and output nodes
ni : int
输入层节点.
nh : int or list
隐藏层节点.
no : int
输出层节点.
active_fun_list : list
隐藏层激活函数类型.
Returns
-------
"""
# ==> 1
self.neurals = [] # 各层的神经元数目
self.neurals.append(ni)
if isinstance(nh, list):
self.neurals.extend(nh)
else:
self.neurals.append(nh)
self.neurals.append(no)
# ==> 2
if len(self.neurals) - 2 == len(active_fun_list):
active_fun_list.append('line')
self.active_fun_list = active_fun_list
# ==> 3
self.layers = [] # 所有的层
layer_struct = []
for i in range(0, len(self.neurals)):
if i == 0:
self.layers.append(Layer([], [], self.neurals[i], 'line', i))
continue
f = self.neurals[i - 1]
s = self.neurals[i]
self.layers.append(
Layer(np.random.randn(s, f), np.random.randn(s, 1),
self.neurals[i], self.active_fun_list[i - 1], i))
layer_struct.append([f, s])
print(f"Network struct : {layer_struct}")
print(f"Layer active funciation : {active_fun_list}")
class NeuralNetwork:
"""
Description
-------
多层反向神经网络
"""
def __init__(self, net_struct, mu=1e-3, beta=10, iteration=100, tol=0.1):
self.net_struct = net_struct
self.layer_num = len(net_struct.layers)
self.mu = mu
self.beta = beta
self.iteration = iteration
self.tol = tol
def train(self, x, y, method='lm'):
"""
训练
"""
self.net_struct.x = x.T
self.net_struct.y = y.reshape(1, -1)
if method == 'lm':
self.lm()
def predict(self, x):
"""
预测
"""
self.net_struct.x = x.T
self.forward()
layer_num = len(self.net_struct.layers)
predict = self.net_struct.layers[layer_num - 1].output_val
return predict[0, :]
def actFun(self, z, active_type='sigm'):
"""
激活函数
"""
# activ_type: 激活函数类型有 sigm、tanh、radb、line
if active_type == 'sigm':
f = 1.0 / (1.0 + np.exp(-z))
elif active_type == 'tanh':
f = (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
elif active_type == 'radb':
f = np.exp(-z * z)
elif active_type == 'line':
f = z
return f
def actFunGrad(self, z, active_type='sigm'):
"""
激活函数的变化(派生)率
"""
# active_type: 激活函数类型有 sigm、tanh、radb、line
y = self.actFun(z, active_type)
if active_type == 'sigm':
grad = y * (1.0 - y)
elif active_type == 'tanh':
grad = 1.0 - y * y
elif active_type == 'radb':
grad = -2.0 * y * y
elif active_type == 'line':
m = y.shape[0]
n = y.shape[1]
grad = np.ones((m, n))
return grad
def forward(self):
"""
前向
"""
# layer_num = len(self.net_struct.layers)
for i in range(0, self.layer_num):
if i == 0:
curr_layer = self.net_struct.layers[i]
curr_layer.input_val = self.net_struct.x
curr_layer.output_val = self.net_struct.x
continue
before_layer = self.net_struct.layers[i - 1]
curr_layer = self.net_struct.layers[i]
curr_layer.input_val = np.dot(
curr_layer.w, before_layer.output_val) + curr_layer.b
curr_layer.output_val = self.actFun(
curr_layer.input_val, self.net_struct.active_fun_list[i - 1])
def backward(self):
"""
反向
"""
layer_num = len(self.net_struct.layers)
last_layer = self.net_struct.layers[layer_num - 1]
last_layer.error = -self.actFunGrad(
last_layer.input_val,
self.net_struct.active_fun_list[layer_num - 2])
layer_index = list(range(1, layer_num - 1))
layer_index.reverse()
for i in layer_index:
curr_layer = self.net_struct.layers[i]
curr_layer.error = np.dot(
last_layer.w.transpose(), last_layer.error) * self.actFunGrad(
curr_layer.input_val,
self.net_struct.active_fun_list[i - 1])
last_layer = curr_layer
def parDeriv(self):
"""
标准梯度(求导)
"""
layer_num = len(self.net_struct.layers)
for i in range(1, layer_num):
befor_layer = self.net_struct.layers[i - 1]
befor_input_val = befor_layer.output_val.transpose()
curr_layer = self.net_struct.layers[i]
curr_error = curr_layer.error
curr_error = curr_error.reshape(-1, 1, order='F')
# curr_error = curr_error.reshape(curr_error.shape[0] *
# curr_error.shape[1],
# 1,
# order='F')
row = curr_error.shape[0]
col = befor_input_val.shape[1]
a = np.zeros((row, col))
num = befor_input_val.shape[0]
neural_number = curr_layer.neural_number
for i in range(0, num):
a[neural_number * i:neural_number * i +
neural_number, :] = np.repeat([befor_input_val[i, :]],
neural_number,
axis=0)
tmp_w_par_deriv = curr_error * a
curr_layer.w_par_deriv = np.zeros(
(num, befor_layer.neural_number * curr_layer.neural_number))
for i in range(0, num):
tmp = tmp_w_par_deriv[neural_number * i:neural_number * i +
neural_number, :]
tmp = tmp.reshape(tmp.shape[0] * tmp.shape[1], order='C')
curr_layer.w_par_deriv[i, :] = tmp
curr_layer.b_par_deriv = curr_layer.error.transpose()
def jacobian(self):
"""
雅可比行列式
"""
layers = self.net_struct.neurals
row = self.net_struct.x.shape[1]
col = 0
for i in range(0, len(layers) - 1):
col = col + layers[i] * layers[i + 1] + layers[i + 1]
j = np.zeros((row, col))
layer_num = len(self.net_struct.layers)
index = 0
for i in range(1, layer_num):
curr_layer = self.net_struct.layers[i]
w_col = curr_layer.w_par_deriv.shape[1]
b_col = curr_layer.b_par_deriv.shape[1]
j[:, index:index + w_col] = curr_layer.w_par_deriv
index = index + w_col
j[:, index:index + b_col] = curr_layer.b_par_deriv
index = index + b_col
return j
def gradCheck(self):
"""
梯度检查
"""
W1 = self.net_struct.layers[1].w
b1 = self.net_struct.layers[1].b
n = self.net_struct.layers[1].neural_number
W2 = self.net_struct.layers[2].w
b2 = self.net_struct.layers[2].b
x = self.net_struct.x
p = []
p.extend(W1.reshape(1, W1.shape[0] * W1.shape[1], order='C')[0])
p.extend(b1.reshape(1, b1.shape[0] * b1.shape[1], order='C')[0])
p.extend(W2.reshape(1, W2.shape[0] * W2.shape[1], order='C')[0])
p.extend(b2.reshape(1, b2.shape[0] * b2.shape[1], order='C')[0])
old_p = p
jac = []
for i in range(0, x.shape[1]):
xi = np.array([x[:, i]])
xi = xi.transpose()
ji = []
for j in range(0, len(p)):
W1 = np.array(p[0:2 * n]).reshape(n, 2, order='C')
b1 = np.array(p[2 * n:2 * n + n]).reshape(n, 1, order='C')
W2 = np.array(p[3 * n:4 * n]).reshape(1, n, order='C')
b2 = np.array(p[4 * n:4 * n + 1]).reshape(1, 1, order='C')
z2 = np.dot(W1, xi) + b1 # W1.dot(xi) + b1
a2 = self.actFun(z2)
z3 = np.dot(W2, a2) + b2 # W2.dot(a2) + b2
h1 = self.actFun(z3)
p[j] = p[j] + 0.00001
W1 = np.array(p[0:2 * n]).reshape(n, 2, order='C')
b1 = np.array(p[2 * n:2 * n + n]).reshape(n, 1, order='C')
W2 = np.array(p[3 * n:4 * n]).reshape(1, n, order='C')
b2 = np.array(p[4 * n:4 * n + 1]).reshape(1, 1, order='C')
z2 = np.dot(W1, xi) + b1 # W1.dot(xi) + b1
a2 = self.actFun(z2)
z3 = np.dot(W2, a2) + b2 # W2.dot(a2) + b2
h = self.actFun(z3)
g = (h[0][0] - h1[0][0]) / 0.00001
ji.append(g)
jac.append(ji)
p = old_p
return jac
def jjje(self):
"""
计算jj与je
"""
layer_num = len(self.net_struct.layers)
e = self.net_struct.y - self.net_struct.layers[layer_num -
1].output_val
e = e.transpose()
j = self.jacobian()
# check gradient
# j1 = -np.array(self.gradCheck())
# jk = j.reshape(1,j.shape[0]*j.shape[1])
# jk1 = j1.reshape(1,j1.shape[0]*j1.shape[1])
# plt.plot(jk[0])
# plt.plot(jk1[0],'.')
# plt.show()
jj = np.dot(j.transpose(), j) # j.transpose().dot(j)
je = np.dot(-j.transpose(), e) # -j.transpose().dot(e)
return [jj, je]
def lm(self):
"""
Levenberg-Marquardt训练算法
"""
mu = self.mu
beta = self.beta
iteration = self.iteration
tol = self.tol
y = self.net_struct.y
layer_num = len(self.net_struct.layers)
self.forward()
pred = self.net_struct.layers[layer_num - 1].output_val
pref = self.perfermance(y, pred)
for i in range(0, iteration):
if i % 100 == 0:
print(f'iter : {i} error {pref}')
# 1) 第一步:
if pref < tol:
break
# 2) 第二步:
self.backward()
self.parDeriv()
jj, je = self.jjje()
while 1:
# 3) 第三步:
A = jj + mu * np.diag(np.ones(jj.shape[0]))
delta_w_b = np.dot(pinv(A), je) # pinv(A).dot(je)
# 4) 第四步:
old_net_struct = copy.deepcopy(self.net_struct)
self.updataNetStruct(delta_w_b)
self.forward()
pred1 = self.net_struct.layers[layer_num - 1].output_val
pref1 = self.perfermance(y, pred1)
if pref1 < pref:
mu = mu / beta
pref = pref1
break
mu = mu * beta
self.net_struct = copy.deepcopy(old_net_struct)
# pred_1 = self.net_struct.layers[layer_num - 1].output_val
def updataNetStruct(self, delta_w_b):
"""
更新网络权重及阈值
"""
layer_num = len(self.net_struct.layers)
index = 0
for i in range(1, layer_num):
before_layer = self.net_struct.layers[i - 1]
curr_layer = self.net_struct.layers[i]
w_num = before_layer.neural_number * curr_layer.neural_number
b_num = curr_layer.neural_number
w = delta_w_b[index:index + w_num]
w = w.reshape(curr_layer.neural_number,
before_layer.neural_number,
order='C')
index = index + w_num
b = delta_w_b[index:index + b_num]
index = index + b_num
curr_layer.w += w
curr_layer.b += b
def perfermance(self, y, pred):
"""
性能函数
"""
error = y - pred
return norm(error) / len(y)
# 以下函数为测试样例
def plotSamples(n=40):
x = np.array([np.linspace(0, 3, n)])
x = x.repeat(n, axis=0)
y = x.transpose()
z = np.zeros((n, n))
for i in range(0, x.shape[0]):
for j in range(0, x.shape[1]):
z[i, j] = sampleFun(x[i, j], y[i, j])
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z, cmap='autumn', cstride=2, rstride=2)
ax.set_xlabel("X-Label")
ax.set_ylabel("Y-Label")
ax.set_zlabel("Z-Label")
plt.show()
plt.close()
return None
def sinSamples(n):
x = np.array([np.linspace(-0.5, 0.5, n)])
y = x + 0.2
z = np.sin(x * y)
X = np.vstack((x, y))
return X.transpose(), z[0, :]
def peaksSamples(n):
x = np.array([np.linspace(-3, 3, n)])
x = x.repeat(n, axis=0)
y = x.transpose()
z = np.zeros((n, n))
for i in range(0, x.shape[0]):
for j in range(0, x.shape[1]):
z[i, j] = sampleFun(x[i, j], y[i, j])
X = np.zeros((n * n, 2))
X[:, 0] = x.flatten()
X[:, 1] = y.flatten()
return X, z.flatten()
def sampleFun(x, y):
z = 3 * pow((1 - x), 2) * exp(-(pow(x, 2)) - pow(
(y + 1), 2)) - 10 * (x / 5 - pow(x, 3) - pow(y, 5)) * exp(
-pow(x, 2) - pow(y, 2)) - 1 / 3 * exp(-pow((x + 1), 2) - pow(y, 2))
return z
def load_iris(show=False):
iris = pd.read_csv('data/iris.csv').sample(frac=1).reset_index(drop=True)
# Create numeric classes for species (0,1,2)
iris.loc[iris['species'] == 'virginica', 'species_id'] = 0
iris.loc[iris['species'] == 'versicolor', 'species_id'] = 1
iris.loc[iris['species'] == 'setosa', 'species_id'] = 2
# iris = iris[iris['species_id']!=2]
raw_feature = iris.iloc[0:, 0:4].values.astype(float)
ele = iris['species_id'].values
x_0, x_1 = raw_feature[:100, :], raw_feature[101:, :]
y_0, y_1 = ele[:100], ele[101:]
# Make a scatter plot
if show:
# Create Input and Output columns
x = iris[['petal_length', 'petal_width']].values.T
y = iris[['species_id']].values.astype('uint8').T
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(x[0, :], x[1, :], c=y[0, :], s=40, cmap=plt.cm.Spectral)
plt.title(
"IRIS DATA | Blue - Setosa, Yellow - Versicolor, Red - Virginica ")
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.tight_layout()
plt.show()
plt.close()
return x_0, y_0, x_1, y_1
if __name__ == '__main__':
train_x, train_y = peaksSamples(20) # 产生训练数据
test_x, test_y = peaksSamples(40) # 产生测试数据
# 第二个测试数据
# train_x, train_y = sinSamples(20)
# test_x, test_y = sinSamples(40)
# Iris
# train_x, train_y, test_x, test_y = load_iris()
print(train_x.shape)
print(train_y.shape)
# 设置各隐层的激活函数类型,可以设置为sigm, radb, tanh, line类型,如果不显式的设置最后一层为line
active_fun_list = ['sigm', 'sigm', 'sigm']
ns = NetStruct(train_x.shape[1], [10, 10, 10], 1, active_fun_list)
nn = NeuralNetwork(ns)
nn.train(train_x, train_y)
pred_y = nn.predict(test_x)
# class_y = np.ones_like(test_y)
# class_y[pred_y<0.5] = 0
# class_y[pred_y>1.5] = 2
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(test_y) # 画出真实值 real data
ax.plot(pred_y, 'r.') # 画出预测值 predict data
plt.legend(('real data', 'predict data'))
plt.tight_layout()
plt.show()
plt.close()