-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfairgo_gcn.py
283 lines (234 loc) · 12.7 KB
/
fairgo_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# -*- coding: utf-8 -*-
# @Time : 2022/3/6
# @Author : Jiakai Tang
# @Email : whut_tangjiakai@qq.com
r"""
FairGO
################################################
Reference:
Wu Le et al. "Learning Fair Representations for Recommendation: A Graph-based Perspective." in WWW 2021.
"""
import torch
import torch.nn as nn
from recbole.model.abstract_recommender import FairRecommender
from recbole.model.layers import MLPLayers, activation_layer
from recbole.utils import InputType
import numpy as np
import scipy.sparse as sp
from torch_geometric.nn import GCN
class FairGo_GCN(FairRecommender):
r""" FairGo is a fair-aware model for learning fair graph embeddings that be trained in the pointwise way.
"""
input_type = InputType.POINTWISE
def __init__(self, config, dataset):
super(FairGo_GCN, self).__init__(config, dataset)
# load parameters info
self.RATING = config['RATING_FIELD']
self.n_layers = config['n_layers']
self.act = config['activation']
self.embedding_size = config['embedding_size']
self.dis_hidden_size_list = config['dis_hidden_size_list']
self.filter_hidden_size_list = config['filter_hidden_size_list']
self.sst_attrs = config['sst_attr_list']
self.fair_weight = config['fair_weight']
self.load_pretrain_weight = config['load_pretrain_weight']
self.train_stage = None
self.aggr_method = config['aggr_method'].upper()
if config['vs_weights'] is not None:
self.vs_weights = config['vs_weights']
self.vs_weights = torch.tensor(self.vs_weights, dtype=torch.float32)
self.vs_weights /= sum(self.vs_weights)
if self.aggr_method == 'LVA':
assert self.n_layers == len(self.vs_weights), 'n_layers should be equal to length of vs_weights'
self.max_rating = dataset.inter_feat[self.RATING].max()
self.gcn = GCN(in_channels=self.embedding_size,
hidden_channels=config['hidden_channels'],
out_channels=self.embedding_size,
num_layers= config['gcn_n_layers'],
dropout=config['gcn_dropout'],
act=config['gcn_act']).to(self.device)
# load dataset info
self.rating_matrix = dataset.inter_matrix(form='coo', value_field=self.RATING).astype(np.float32)
edge_indice1 = torch.from_numpy(np.concatenate((self.rating_matrix.row, self.rating_matrix.col+self.n_users))).to(self.device).long()
edge_indice2 = torch.from_numpy(np.concatenate((self.rating_matrix.col+self.n_users, self.rating_matrix.row))).to(self.device).long()
edge_weights = torch.from_numpy(self.rating_matrix.data).to(self.device)
self.edge_indices = torch.stack([edge_indice1, edge_indice2], dim=0).to(self.device)
self.edge_weights = torch.cat([edge_weights, edge_weights])
if self.load_pretrain_weight:
user_emb = dataset.get_preload_weight('uid')
item_emb = dataset.get_preload_weight('iid')
self.sst_size = self._get_sst_size(dataset.get_user_feature())
# define layers and loss
self.user_embedding_layer = torch.nn.Embedding(self.n_users, self.embedding_size, padding_idx=0)
self.item_embedding_layer = torch.nn.Embedding(self.n_items, self.embedding_size, padding_idx=0)
if self.load_pretrain_weight:
self.user_embedding_layer.weight.data.copy_(torch.from_numpy(user_emb))
self.item_embedding_layer.weight.data.copy_(torch.from_numpy(item_emb))
self.dis_layer_dict = self.init_dis_layers()
self.filter_layer_dict = self.init_filter_layers()
self.aggr_layer = nn.Sequential(nn.Linear(self.n_layers*self.embedding_size, self.embedding_size),
activation_layer(self.act),
nn.Linear(self.embedding_size, self.embedding_size),
activation_layer(self.act),
nn.Linear(self.embedding_size, self.embedding_size))
self.bin_dis_fun = nn.BCELoss()
self.multi_dis_fun = nn.CrossEntropyLoss()
self.mse_loss_fun = nn.MSELoss()
self.sigmoid = nn.Sigmoid()
# generate intermediate data
self.norm_rating_matrix = self.get_norm_rating_matrix().to(self.device)
def _get_sst_size(self, user_feature):
r""" calculate size of each sensitive attribute for discriminator construction
Args:
user_feature(Interaction): contain user's features, such as gender, age, etc.
Returns:
dict: every sensitive attribute and its number
"""
sst_size = {}
for sst in self.sst_attrs:
try:
assert sst in user_feature.columns
except AssertionError:
raise ValueError(f'{sst} sensitive attribute not in user feature')
sst_size[sst] = len(user_feature[sst][1:].unique())
return sst_size
def get_norm_rating_matrix(self):
r""" Get norm rating matrix according training rating matrix
Return:
torch.sparse.FloatTensor: The norm rating matrix in form of sparse matrix
"""
# build rating matrix
A = sp.dok_matrix((self.n_users + self.n_items, self.n_users + self.n_items), dtype=np.float32)
rating_M = self.rating_matrix
rating_M_T = self.rating_matrix.transpose()
data_dict = dict(zip(zip(rating_M.row, rating_M.col + self.n_users), rating_M.data))
data_dict.update(dict(zip(zip(rating_M_T.row + self.n_users, rating_M_T.col), rating_M_T.data)))
A._update(data_dict)
# norm rating matrix
sumArr = A.sum(axis=1)
# add epsilon to avoid divide by zero Warning
diag = np.array(sumArr.flatten())[0] + 1e-7
diag = 1.0 / diag
D = sp.diags(diag)
L = D * A
L = sp.coo_matrix(L)
row = L.row
col = L.col
# covert norm rating matrix to tensor
i = torch.LongTensor([row, col])
data = torch.FloatTensor(L.data)
SparseL = torch.sparse.FloatTensor(i, data, torch.Size(L.shape))
return SparseL
def get_ego_embeddings(self):
r"""Get embedding matrix of users and items.
Returns:
torch.FloatTensor: The embedding matrix of all users and items, shape: [user_num + item_num, embedding_size]
"""
user_embeddings = self.user_embedding_layer.weight
item_embeddings = self.item_embedding_layer.weight
ego_embeddings = torch.cat([user_embeddings, item_embeddings], dim=0)
return ego_embeddings
def init_dis_layers(self):
dis_layer_dict = {}
for sst in self.sst_attrs:
output_dim = self.sst_size[sst]
if output_dim == 2:
output_dim = 1
dis_layer_dict[sst] = MLPLayers(layers=[self.embedding_size]+self.dis_hidden_size_list+[output_dim],
activation=self.act).to(self.device)
return dis_layer_dict
def init_filter_layers(self):
filter_layer_dict = {}
for sst in self.sst_attrs:
filter_layer_dict[sst] = MLPLayers(layers=[self.embedding_size]+self.filter_hidden_size_list+[self.embedding_size],
activation=self.act).to(self.device)
return filter_layer_dict
def forward(self, sst_list):
all_embedding = self.get_ego_embeddings()
if self.train_stage == 'pretrain':
all_embedding = self.gcn(all_embedding, self.edge_indices, edge_weight=self.edge_weights)
if self.train_stage == 'finetune':
temp = None
for sst in sst_list:
temp = self.filter_layer_dict[sst](all_embedding) if temp is None else temp+self.filter_layer_dict[sst](all_embedding)
all_embedding = temp/len(self.filter_layer_dict)
user_all_embeddings, item_all_embeddings = torch.split(all_embedding, [self.n_users, self.n_items])
return user_all_embeddings, item_all_embeddings
def calculate_loss(self, interaction, sst_list=None):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
rating = interaction[self.RATING]
user_all_embeddings, item_all_embeddings = self.forward(sst_list)
user_embeddings = user_all_embeddings[user]
item_embeddings = item_all_embeddings[item]
pred_ratings = (user_embeddings * item_embeddings).sum(dim=-1)
mse_loss = self.mse_loss_fun(pred_ratings, rating)
if self.train_stage == 'finetune':
fair_loss = self.fair_weight * self.calculate_dis_loss(interaction, sst_list)
return mse_loss - fair_loss
return mse_loss
def calculate_dis_loss(self, interaction, sst_list):
r""" Calculate loss of discriminator
"""
user = interaction[self.USER_ID]
user_all_embeddings, item_all_embeddings = self.forward(sst_list)
user_node_embedding = user_all_embeddings[user]
all_embeddings = torch.cat([user_all_embeddings, item_all_embeddings], dim=0)
graph_embedding_list = []
for _ in range(self.n_layers):
all_embeddings = torch.sparse.mm(self.norm_rating_matrix, all_embeddings)
graph_embedding_list.append(all_embeddings)
if self.n_layers == 1:
all_graph_embeddings = graph_embedding_list[0]
elif self.aggr_method == 'WAP':
all_graph_embeddings = torch.stack(graph_embedding_list, dim=1)
all_graph_embeddings = torch.mean(all_graph_embeddings, dim=1)
elif self.aggr_method == 'LBA':
all_graph_embeddings = self.aggr_layer(torch.cat(graph_embedding_list, dim=1))
elif self.aggr_method == 'LVA':
all_graph_embeddings = [all_embed[:self.n_users][user] for all_embed in graph_embedding_list]
if self.aggr_method != 'LVA' or self.n_layers == 1:
user_all_graph_embeddings, _ = torch.split(all_graph_embeddings, [self.n_users, self.n_items])
user_local_embedding = user_all_graph_embeddings[user]
node_dis_loss = 0.
local_dis_loss = 0.
for sst in sst_list:
if self.sst_size[sst] == 2:
node_dis_loss += self.bin_dis_fun(self.sigmoid(self.dis_layer_dict[sst](user_node_embedding)),interaction[sst].float().unsqueeze(1))
if self.aggr_method == 'LVA' and self.n_layers > 1:
for i, weight in enumerate(self.vs_weights):
local_dis_loss += weight * self.bin_dis_fun(self.sigmoid(self.dis_layer_dict[sst](all_graph_embeddings[i])),interaction[sst].float().unsqueeze(1))
else:
local_dis_loss += self.bin_dis_fun(self.sigmoid(self.dis_layer_dict[sst](user_local_embedding)),interaction[sst].float().unsqueeze(1))
else:
node_dis_loss += self.multi_dis_fun(self.dis_layer_dict[sst](user_node_embedding),interaction[sst].long())
if self.aggr_method == 'LVA' and self.n_layers > 1:
for i, weight in enumerate(self.vs_weights):
local_dis_loss += weight * self.multi_dis_fun(self.sigmoid(self.dis_layer_dict[sst](all_graph_embeddings[i])),interaction[sst].long())
else:
local_dis_loss += self.multi_dis_fun(self.sigmoid(self.dis_layer_dict[sst](user_local_embedding)),interaction[sst].long())
return node_dis_loss + local_dis_loss
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward(self.sst_attrs)
u_embeddings = user_all_embeddings[user]
i_embeddings = item_all_embeddings[item]
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1)
return torch.clamp(scores.view(-1), min=0., max=self.max_rating) / self.max_rating
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
all_user_embedding, all_item_embedding = self.forward(self.sst_attrs)
user_embedding = all_user_embedding[user]
# dot with all item embedding to accelerate
pred_ratings = torch.matmul(user_embedding, all_item_embedding.transpose(0, 1))
return torch.clamp(pred_ratings.view(-1), min=0., max=self.max_rating) / self.max_rating
def get_sst_embed(self, user_data, sst_list=None):
ret_dict = {}
user_indices = torch.arange(1,self.n_users)
sst_list = self.sst_attrs if sst_list is None else sst_list
for sst in sst_list:
ret_dict[sst] = user_data[sst][user_indices-1]
user_embeddings, _ = self.forward(sst_list)
ret_dict['embedding'] = user_embeddings[user_indices]
return ret_dict