-
Notifications
You must be signed in to change notification settings - Fork 17
/
utils.py
143 lines (122 loc) · 5.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# --------------------------------------------------------
# Focal Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Jianwei Yang (jianwyan@microsoft.com)
# Based on Swin Transformer written by Zhe Liu
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
from timm.models.layers import trunc_normal_
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def load_checkpoint(config, model, optimizer, lr_scheduler, logger):
logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
if "focal" in config.MODEL.RESUME and 'model' not in checkpoint:
checkpoint = {'model': checkpoint}
if 'head.weight' in checkpoint['model']:
if model.state_dict()['head.weight'].shape != checkpoint['model']['head.weight'].shape:
# TODO: select the corresponding weights for 1K
# checkpoint['model']['head.weight'] = checkpoint['model']['head.weight'].new(model.state_dict()['head.weight'].shape)
# trunc_normal_(checkpoint['model']['head.weight'], std=.02)
# checkpoint['model']['head.bias'] = checkpoint['model']['head.bias'].new(model.state_dict()['head.bias'].shape)
# trunc_normal_(checkpoint['model']['head.bias'], std=.02)
checkpoint['model']['head.weight'] = model.state_dict()['head.weight'][:1000]
checkpoint['model']['head.bias'] = model.state_dict()['head.bias'][:1000]
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0":
amp.load_state_dict(checkpoint['amp'])
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config}
if config.AMP_OPT_LEVEL != "O0":
save_state['amp'] = amp.state_dict()
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def reduce_tensor_avg_meter(tensor, n=None):
if n is None:
n = dist.get_world_size()
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt = rt / n
return rt
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def sync(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
val = torch.tensor(self.val).cuda()
sum_v = torch.tensor(self.sum).cuda()
count = torch.tensor(self.count).cuda()
self.val = reduce_tensor_avg_meter(val, world_size).item()
self.sum = reduce_tensor_avg_meter(sum_v, 1).item()
self.count = reduce_tensor_avg_meter(count, 1).item()
self.avg = self.sum / self.count