-
Notifications
You must be signed in to change notification settings - Fork 504
/
Copy pathapp.py
570 lines (479 loc) · 21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import os
import time
import pdb
import re
import gradio as gr
import numpy as np
import sys
import subprocess
from huggingface_hub import snapshot_download
import requests
import argparse
import os
from omegaconf import OmegaConf
import numpy as np
import cv2
import torch
import glob
import pickle
from tqdm import tqdm
import copy
from argparse import Namespace
import shutil
import gdown
import imageio
import ffmpeg
from moviepy.editor import *
from transformers import WhisperModel
ProjectDir = os.path.abspath(os.path.dirname(__file__))
CheckpointsDir = os.path.join(ProjectDir, "models")
@torch.no_grad()
def debug_inpainting(video_path, bbox_shift, extra_margin=10, parsing_mode="jaw",
left_cheek_width=90, right_cheek_width=90):
"""Debug inpainting parameters, only process the first frame"""
# Set default parameters
args_dict = {
"result_dir": './results/debug',
"fps": 25,
"batch_size": 1,
"output_vid_name": '',
"use_saved_coord": False,
"audio_padding_length_left": 2,
"audio_padding_length_right": 2,
"version": "v15",
"extra_margin": extra_margin,
"parsing_mode": parsing_mode,
"left_cheek_width": left_cheek_width,
"right_cheek_width": right_cheek_width
}
args = Namespace(**args_dict)
# Create debug directory
os.makedirs(args.result_dir, exist_ok=True)
# Read first frame
if get_file_type(video_path) == "video":
reader = imageio.get_reader(video_path)
first_frame = reader.get_data(0)
reader.close()
else:
first_frame = cv2.imread(video_path)
first_frame = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
# Save first frame
debug_frame_path = os.path.join(args.result_dir, "debug_frame.png")
cv2.imwrite(debug_frame_path, cv2.cvtColor(first_frame, cv2.COLOR_RGB2BGR))
# Get face coordinates
coord_list, frame_list = get_landmark_and_bbox([debug_frame_path], bbox_shift)
bbox = coord_list[0]
frame = frame_list[0]
if bbox == coord_placeholder:
return None, "No face detected, please adjust bbox_shift parameter"
# Initialize face parser
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
# Process first frame
x1, y1, x2, y2 = bbox
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
crop_frame = frame[y1:y2, x1:x2]
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
# Generate random audio features
random_audio = torch.randn(1, 50, 384, device=device, dtype=weight_dtype)
audio_feature = pe(random_audio)
# Get latents
latents = vae.get_latents_for_unet(crop_frame)
latents = latents.to(dtype=weight_dtype)
# Generate prediction results
pred_latents = unet.model(latents, timesteps, encoder_hidden_states=audio_feature).sample
recon = vae.decode_latents(pred_latents)
# Inpaint back to original image
res_frame = recon[0]
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
combine_frame = get_image(frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
# Save results (no need to convert color space again since get_image already returns RGB format)
debug_result_path = os.path.join(args.result_dir, "debug_result.png")
cv2.imwrite(debug_result_path, combine_frame)
# Create information text
info_text = f"Parameter information:\n" + \
f"bbox_shift: {bbox_shift}\n" + \
f"extra_margin: {extra_margin}\n" + \
f"parsing_mode: {parsing_mode}\n" + \
f"left_cheek_width: {left_cheek_width}\n" + \
f"right_cheek_width: {right_cheek_width}\n" + \
f"Detected face coordinates: [{x1}, {y1}, {x2}, {y2}]"
return cv2.cvtColor(combine_frame, cv2.COLOR_RGB2BGR), info_text
def print_directory_contents(path):
for child in os.listdir(path):
child_path = os.path.join(path, child)
if os.path.isdir(child_path):
print(child_path)
def download_model():
# 检查必需的模型文件是否存在
required_models = {
"MuseTalk": f"{CheckpointsDir}/musetalkV15/unet.pth",
"MuseTalk": f"{CheckpointsDir}/musetalkV15/musetalk.json",
"SD VAE": f"{CheckpointsDir}/sd-vae/config.json",
"Whisper": f"{CheckpointsDir}/whisper/config.json",
"DWPose": f"{CheckpointsDir}/dwpose/dw-ll_ucoco_384.pth",
"SyncNet": f"{CheckpointsDir}/syncnet/latentsync_syncnet.pt",
"Face Parse": f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth",
"ResNet": f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth"
}
missing_models = []
for model_name, model_path in required_models.items():
if not os.path.exists(model_path):
missing_models.append(model_name)
if missing_models:
# 全用英文
print("The following required model files are missing:")
for model in missing_models:
print(f"- {model}")
print("\nPlease run the download script to download the missing models:")
if sys.platform == "win32":
print("Windows: Run download_weights.bat")
else:
print("Linux/Mac: Run ./download_weights.sh")
sys.exit(1)
else:
print("All required model files exist.")
download_model() # for huggingface deployment.
from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder, get_bbox_range
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
@torch.no_grad()
def inference(audio_path, video_path, bbox_shift, extra_margin=10, parsing_mode="jaw",
left_cheek_width=90, right_cheek_width=90, progress=gr.Progress(track_tqdm=True)):
# Set default parameters, aligned with inference.py
args_dict = {
"result_dir": './results/output',
"fps": 25,
"batch_size": 8,
"output_vid_name": '',
"use_saved_coord": False,
"audio_padding_length_left": 2,
"audio_padding_length_right": 2,
"version": "v15", # Fixed use v15 version
"extra_margin": extra_margin,
"parsing_mode": parsing_mode,
"left_cheek_width": left_cheek_width,
"right_cheek_width": right_cheek_width
}
args = Namespace(**args_dict)
# Check ffmpeg
if not fast_check_ffmpeg():
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
input_basename = os.path.basename(video_path).split('.')[0]
audio_basename = os.path.basename(audio_path).split('.')[0]
output_basename = f"{input_basename}_{audio_basename}"
# Create temporary directory
temp_dir = os.path.join(args.result_dir, f"{args.version}")
os.makedirs(temp_dir, exist_ok=True)
# Set result save path
result_img_save_path = os.path.join(temp_dir, output_basename)
crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl")
os.makedirs(result_img_save_path, exist_ok=True)
if args.output_vid_name == "":
output_vid_name = os.path.join(temp_dir, output_basename+".mp4")
else:
output_vid_name = os.path.join(temp_dir, args.output_vid_name)
############################################## extract frames from source video ##############################################
if get_file_type(video_path) == "video":
save_dir_full = os.path.join(temp_dir, input_basename)
os.makedirs(save_dir_full, exist_ok=True)
# Read video
reader = imageio.get_reader(video_path)
# Save images
for i, im in enumerate(reader):
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im)
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
fps = get_video_fps(video_path)
else: # input img folder
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
fps = args.fps
############################################## extract audio feature ##############################################
# Extract audio features
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path)
whisper_chunks = audio_processor.get_whisper_chunk(
whisper_input_features,
device,
weight_dtype,
whisper,
librosa_length,
fps=fps,
audio_padding_length_left=args.audio_padding_length_left,
audio_padding_length_right=args.audio_padding_length_right,
)
############################################## preprocess input image ##############################################
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
print("using extracted coordinates")
with open(crop_coord_save_path,'rb') as f:
coord_list = pickle.load(f)
frame_list = read_imgs(input_img_list)
else:
print("extracting landmarks...time consuming")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
with open(crop_coord_save_path, 'wb') as f:
pickle.dump(coord_list, f)
bbox_shift_text = get_bbox_range(input_img_list, bbox_shift)
# Initialize face parser
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
i = 0
input_latent_list = []
for bbox, frame in zip(coord_list, frame_list):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
crop_frame = frame[y1:y2, x1:x2]
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(crop_frame)
input_latent_list.append(latents)
# to smooth the first and the last frame
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
############################################## inference batch by batch ##############################################
print("start inference")
video_num = len(whisper_chunks)
batch_size = args.batch_size
gen = datagen(
whisper_chunks=whisper_chunks,
vae_encode_latents=input_latent_list_cycle,
batch_size=batch_size,
delay_frame=0,
device=device,
)
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
audio_feature_batch = pe(whisper_batch)
# Ensure latent_batch is consistent with model weight type
latent_batch = latent_batch.to(dtype=weight_dtype)
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
############################################## pad to full image ##############################################
print("pad talking image to original video")
for i, res_frame in enumerate(tqdm(res_frame_list)):
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
x1, y1, x2, y2 = bbox
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
continue
# Use v15 version blending
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
# Frame rate
fps = 25
# Output video path
output_video = 'temp.mp4'
# Read images
def is_valid_image(file):
pattern = re.compile(r'\d{8}\.png')
return pattern.match(file)
images = []
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)]
files.sort(key=lambda x: int(x.split('.')[0]))
for file in files:
filename = os.path.join(result_img_save_path, file)
images.append(imageio.imread(filename))
# Save video
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p')
input_video = './temp.mp4'
# Check if the input_video and audio_path exist
if not os.path.exists(input_video):
raise FileNotFoundError(f"Input video file not found: {input_video}")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# Read video
reader = imageio.get_reader(input_video)
fps = reader.get_meta_data()['fps'] # Get original video frame rate
reader.close() # Otherwise, error on win11: PermissionError: [WinError 32] Another program is using this file, process cannot access. : 'temp.mp4'
# Store frames in list
frames = images
print(len(frames))
# Load the video
video_clip = VideoFileClip(input_video)
# Load the audio
audio_clip = AudioFileClip(audio_path)
# Set the audio to the video
video_clip = video_clip.set_audio(audio_clip)
# Write the output video
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25)
os.remove("temp.mp4")
#shutil.rmtree(result_img_save_path)
print(f"result is save to {output_vid_name}")
return output_vid_name,bbox_shift_text
# load model weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae, unet, pe = load_all_model(
unet_model_path="./models/musetalkV15/unet.pth",
vae_type="sd-vae",
unet_config="./models/musetalkV15/musetalk.json",
device=device
)
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--ffmpeg_path", type=str, default=r"ffmpeg-master-latest-win64-gpl-shared\bin", help="Path to ffmpeg executable")
parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to")
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
parser.add_argument("--share", action="store_true", help="Create a public link")
parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference")
args = parser.parse_args()
# Set data type
if args.use_float16:
# Convert models to half precision for better performance
pe = pe.half()
vae.vae = vae.vae.half()
unet.model = unet.model.half()
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
# Move models to specified device
pe = pe.to(device)
vae.vae = vae.vae.to(device)
unet.model = unet.model.to(device)
timesteps = torch.tensor([0], device=device)
# Initialize audio processor and Whisper model
audio_processor = AudioProcessor(feature_extractor_path="./models/whisper")
whisper = WhisperModel.from_pretrained("./models/whisper")
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
whisper.requires_grad_(False)
def check_video(video):
if not isinstance(video, str):
return video # in case of none type
# Define the output video file name
dir_path, file_name = os.path.split(video)
if file_name.startswith("outputxxx_"):
return video
# Add the output prefix to the file name
output_file_name = "outputxxx_" + file_name
os.makedirs('./results',exist_ok=True)
os.makedirs('./results/output',exist_ok=True)
os.makedirs('./results/input',exist_ok=True)
# Combine the directory path and the new file name
output_video = os.path.join('./results/input', output_file_name)
# read video
reader = imageio.get_reader(video)
fps = reader.get_meta_data()['fps'] # get fps from original video
# conver fps to 25
frames = [im for im in reader]
target_fps = 25
L = len(frames)
L_target = int(L / fps * target_fps)
original_t = [x / fps for x in range(1, L+1)]
t_idx = 0
target_frames = []
for target_t in range(1, L_target+1):
while target_t / target_fps > original_t[t_idx]:
t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx]
if t_idx >= L:
break
target_frames.append(frames[t_idx])
# save video
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p')
return output_video
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""<div align='center'> <h1>MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling</h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
</br>\
Yue Zhang <sup>*</sup>,\
Zhizhou Zhong <sup>*</sup>,\
Minhao Liu<sup>*</sup>,\
Zhaokang Chen,\
Bin Wu<sup>†</sup>,\
Yubin Zeng,\
Chao Zhang,\
Yingjie He,\
Junxin Huang,\
Wenjiang Zhou <br>\
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)\
Lyra Lab, Tencent Music Entertainment\
</h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2410.10122'> [Technical report] </a>"""
)
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Drving Audio",type="filepath")
video = gr.Video(label="Reference Video",sources=['upload'])
bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
extra_margin = gr.Slider(label="Extra Margin", minimum=0, maximum=40, value=10, step=1)
parsing_mode = gr.Radio(label="Parsing Mode", choices=["jaw", "raw"], value="jaw")
left_cheek_width = gr.Slider(label="Left Cheek Width", minimum=20, maximum=160, value=90, step=5)
right_cheek_width = gr.Slider(label="Right Cheek Width", minimum=20, maximum=160, value=90, step=5)
bbox_shift_scale = gr.Textbox(label="'left_cheek_width' and 'right_cheek_width' parameters determine the range of left and right cheeks editing when parsing model is 'jaw'. The 'extra_margin' parameter determines the movement range of the jaw. Users can freely adjust these three parameters to obtain better inpainting results.")
with gr.Row():
debug_btn = gr.Button("1. Test Inpainting ")
btn = gr.Button("2. Generate")
with gr.Column():
debug_image = gr.Image(label="Test Inpainting Result (First Frame)")
debug_info = gr.Textbox(label="Parameter Information", lines=5)
out1 = gr.Video()
video.change(
fn=check_video, inputs=[video], outputs=[video]
)
btn.click(
fn=inference,
inputs=[
audio,
video,
bbox_shift,
extra_margin,
parsing_mode,
left_cheek_width,
right_cheek_width
],
outputs=[out1,bbox_shift_scale]
)
debug_btn.click(
fn=debug_inpainting,
inputs=[
video,
bbox_shift,
extra_margin,
parsing_mode,
left_cheek_width,
right_cheek_width
],
outputs=[debug_image, debug_info]
)
# Check ffmpeg and add to PATH
if not fast_check_ffmpeg():
print(f"Adding ffmpeg to PATH: {args.ffmpeg_path}")
# According to operating system, choose path separator
path_separator = ';' if sys.platform == 'win32' else ':'
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
if not fast_check_ffmpeg():
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
# Solve asynchronous IO issues on Windows
if sys.platform == 'win32':
import asyncio
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
# Start Gradio application
demo.queue().launch(
share=args.share,
debug=True,
server_name=args.ip,
server_port=args.port
)