forked from facebookresearch/mbrl-lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanet.py
194 lines (174 loc) · 6.61 KB
/
planet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import pathlib
from typing import List, Optional, Union
import gymnasium as gym
import hydra
import numpy as np
import omegaconf
import torch
from tqdm import tqdm
import mbrl.constants
from mbrl.env.termination_fns import no_termination
from mbrl.models import ModelEnv, ModelTrainer
from mbrl.planning import RandomAgent, create_trajectory_optim_agent_for_model
from mbrl.util import Logger
from mbrl.util.common import (
create_replay_buffer,
get_sequence_buffer_iterator,
rollout_agent_trajectories,
)
METRICS_LOG_FORMAT = [
("observations_loss", "OL", "float"),
("reward_loss", "RL", "float"),
("gradient_norm", "GN", "float"),
("kl_loss", "KL", "float"),
]
def train(
env: gym.Env,
cfg: omegaconf.DictConfig,
silent: bool = False,
work_dir: Union[Optional[str], pathlib.Path] = None,
) -> np.float32:
# Experiment initialization
debug_mode = cfg.get("debug_mode", False)
if work_dir is None:
work_dir = os.getcwd()
work_dir = pathlib.Path(work_dir)
print(f"Results will be saved at {work_dir}.")
if silent:
logger = None
else:
logger = Logger(work_dir)
logger.register_group("metrics", METRICS_LOG_FORMAT, color="yellow")
logger.register_group(
mbrl.constants.RESULTS_LOG_NAME,
[
("env_step", "S", "int"),
("train_episode_reward", "RT", "float"),
("episode_reward", "ET", "float"),
],
color="green",
)
rng = torch.Generator(device=cfg.device)
rng.manual_seed(cfg.seed)
np_rng = np.random.default_rng(seed=cfg.seed)
# Create replay buffer and collect initial data
replay_buffer = create_replay_buffer(
cfg,
env.observation_space.shape,
env.action_space.shape,
collect_trajectories=True,
rng=np_rng,
)
rollout_agent_trajectories(
env,
cfg.algorithm.num_initial_trajectories,
RandomAgent(env),
agent_kwargs={},
replay_buffer=replay_buffer,
collect_full_trajectories=True,
trial_length=cfg.overrides.trial_length,
agent_uses_low_dim_obs=False,
)
# Create PlaNet model
cfg.dynamics_model.action_size = env.action_space.shape[0]
planet = hydra.utils.instantiate(cfg.dynamics_model)
assert isinstance(planet, mbrl.models.PlaNetModel)
model_env = ModelEnv(env, planet, no_termination, generator=rng)
trainer = ModelTrainer(planet, logger=logger, optim_lr=1e-3, optim_eps=1e-4)
# Create CEM agent
# This agent rolls outs trajectories using ModelEnv, which uses planet.sample()
# to simulate the trajectories from the prior transition model
# The starting point for trajectories is conditioned on the latest observation,
# for which we use planet.update_posterior() after each environment step
agent = create_trajectory_optim_agent_for_model(model_env, cfg.algorithm.agent)
# Callback and containers to accumulate training statistics and average over batch
rec_losses: List[float] = []
reward_losses: List[float] = []
kl_losses: List[float] = []
grad_norms: List[float] = []
def get_metrics_and_clear_metric_containers():
metrics_ = {
"observations_loss": np.mean(rec_losses).item(),
"reward_loss": np.mean(reward_losses).item(),
"gradient_norm": np.mean(grad_norms).item(),
"kl_loss": np.mean(kl_losses).item(),
}
for c in [rec_losses, reward_losses, kl_losses, grad_norms]:
c.clear()
return metrics_
def batch_callback(_epoch, _loss, meta, _mode):
if meta:
rec_losses.append(meta["observations_loss"])
reward_losses.append(meta["reward_loss"])
kl_losses.append(meta["kl_loss"])
if "grad_norm" in meta:
grad_norms.append(meta["grad_norm"])
def is_test_episode(episode_):
return episode_ % cfg.algorithm.test_frequency == 0
# PlaNet loop
step = replay_buffer.num_stored
total_rewards = 0.0
for episode in tqdm(range(cfg.algorithm.num_episodes)):
# Train the model for one epoch of `num_grad_updates`
dataset, _ = get_sequence_buffer_iterator(
replay_buffer,
cfg.overrides.batch_size,
0, # no validation data
cfg.overrides.sequence_length,
max_batches_per_loop_train=cfg.overrides.num_grad_updates,
use_simple_sampler=True,
)
trainer.train(
dataset, num_epochs=1, batch_callback=batch_callback, evaluate=False
)
planet.save(work_dir)
if cfg.overrides.get("save_replay_buffer", False):
replay_buffer.save(work_dir)
metrics = get_metrics_and_clear_metric_containers()
logger.log_data("metrics", metrics)
# Collect one episode of data
episode_reward = 0.0
obs, _ = env.reset()
agent.reset()
planet.reset_posterior()
action = None
terminated = False
truncated = False
pbar = tqdm(total=1000)
while not terminated and not truncated:
planet.update_posterior(obs, action=action, rng=rng)
action_noise = (
0
if is_test_episode(episode)
else cfg.overrides.action_noise_std
* np_rng.standard_normal(env.action_space.shape[0])
)
action = agent.act(obs) + action_noise
action = np.clip(
action, -1.0, 1.0, dtype=env.action_space.dtype
) # to account for the noise and fix dtype
next_obs, reward, terminated, truncated, _ = env.step(action)
replay_buffer.add(obs, action, next_obs, reward, terminated, truncated)
episode_reward += reward
obs = next_obs
if debug_mode:
print(f"step: {step}, reward: {reward}.")
step += 1
pbar.update(1)
pbar.close()
total_rewards += episode_reward
logger.log_data(
mbrl.constants.RESULTS_LOG_NAME,
{
"episode_reward": episode_reward * is_test_episode(episode),
"train_episode_reward": episode_reward * (1 - is_test_episode(episode)),
"env_step": step,
},
)
# returns average episode reward (e.g., to use for tuning learning curves)
return total_rewards / cfg.algorithm.num_episodes