End-To-End models for autonomous driving. Imitation learning model trained with CoRL2017. The reinforcement learning agents were trained in the CARLA environment:
- Pytorch 1.2.0
- Numpy 1.16.4
- ImgAug 0.2.9
- tsnecuda 2.1.0
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
conda install tsnecuda cuda101 -c cannylab
conda install -c anaconda numpy
conda install -c anaconda pandas
conda install -c anaconda opencv
conda install -c anaconda scipy
conda install -c anaconda h5p
pip install matplotlib
pip install imgaug
pip install tqdm
pip install einops
pip install ipython
pip install tensorboard
CARLA environment instructions, all credits to dianchen96. SOURCE: link.
CARLA download:
wget http://carla-assets-internal.s3.amazonaws.com/Releases/Linux/CARLA_0.9.6.tar.gz
mkdir carla
tar -xvzf CARLA_0.9.6.tar.gz -C carla
cd carla
wget http://www.cs.utexas.edu/~dchen/lbc_release/navmesh/Town01.bin
wget http://www.cs.utexas.edu/~dchen/lbc_release/navmesh/Town02.bin
mv Town*.bin CarlaUE4/Content/Carla/Maps/Nav/
CARLA installation:
cd PythonAPI/carla/dist
rm carla-0.9.6-py3.5-linux-x86_64.egg
wget http://www.cs.utexas.edu/~dchen/lbc_release/egg/carla-0.9.6-py3.5-linux-x86_64.egg
easy_install carla-0.9.6-py3.5-linux-x86_64.egg
Basic exectution:
$ python main.py
Or select execution mode:
$ python main.py --mode train
Mode options: train, continue, plot, play
trainpath and validpath should point to where the CoRL2017 dataset located.
$ python main.py --trainpath ./data/h5file/SeqTrain/
--validpath ./data/h5file/SeqVal/
--savedpath ./Saved
Basic training settings. More options in config.py
.
$ python main.py --mode train
--model Kim2017
--n_epoch 150
--batch_size 120
--optimizer Adam
--scheduler True
Check the training log through tensorboard.
$ tensorboard --logdir runs
You can continue the training with:
$ python main.py --mode continue --name 1910141754
- Codevilla, F., Miiller, M., López, A., Koltun, V., & Dosovitskiy, A. (2018). End-to-end driving via conditional imitation learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1-9).
- Codevilla, F., Santana, E., López, A. M., & Gaidon, A. (2019). Exploring the Limitations of Behavior Cloning for Autonomous Driving. arXiv preprint arXiv:1904.08980.
- Kim, J., & Canny, J. (2017). Interpretable learning for self-driving cars by visualizing causal attention. In Proceedings of the IEEE international conference on computer vision (pp. 2942-2950).
- Kim, J., Misu, T., Chen, Y. T., Tawari, A., & Canny, J. (2019). Grounding Human-To-Vehicle Advice for Self-Driving Vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 10591-10599).
- Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:1511.05952.
- Liang, X., Wang, T., Yang, L., & Xing, E. (2018). CIRL: Controllable imitative reinforcement learning for vision-based self-driving. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 584-599).