forked from cansik/mediapipe-osc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhands.py
78 lines (62 loc) · 2.36 KB
/
hands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import cv2
import mediapipe as mp
from mediapipe.framework.formats import landmark_pb2
from pythonosc import udp_client
from pythonosc.osc_message_builder import OscMessageBuilder
from utils import add_default_args, get_video_input
OSC_ADDRESS = "/mediapipe/hands"
def send_hands(client: udp_client,
detections: [landmark_pb2.NormalizedLandmarkList]):
if detections is None:
client.send_message(OSC_ADDRESS, 0)
return
# create message and send
builder = OscMessageBuilder(address=OSC_ADDRESS)
builder.add_arg(len(detections))
for detection in detections:
for landmark in detection.landmark:
builder.add_arg(landmark.x)
builder.add_arg(landmark.y)
builder.add_arg(landmark.z)
builder.add_arg(landmark.visibility)
msg = builder.build()
client.send(msg)
def main():
# read arguments
parser = argparse.ArgumentParser()
add_default_args(parser)
args = parser.parse_args()
# create osc client
client = udp_client.SimpleUDPClient(args.ip, args.port)
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
min_detection_confidence=0.7, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(get_video_input(args.input))
while cap.isOpened():
success, image = cap.read()
if not success:
break
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
send_hands(client, results.multi_hand_landmarks)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow('MediaPipe OSC Hands', image)
if cv2.waitKey(5) & 0xFF == 27:
break
hands.close()
cap.release()
if __name__ == "__main__":
main()