forked from titu1994/Neural-Style-Transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
INetwork.py
652 lines (490 loc) · 23.8 KB
/
INetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
# from scipy.misc import imread, imresize, imsave, fromimage, toimage
from utils import imread, imresize, imsave, fromimage, toimage
from scipy.optimize import fmin_l_bfgs_b
import numpy as np
import time
import argparse
import warnings
from keras.models import Model
from keras.layers import Input
from keras.layers.convolutional import Convolution2D, AveragePooling2D, MaxPooling2D
from keras import backend as K
from keras.utils.data_utils import get_file
from keras.utils.layer_utils import convert_all_kernels_in_model
"""
Neural Style Transfer with Keras 2.0.5
Based on:
https://github.com/fchollet/keras/blob/master/examples/neural_style_transfer.py
Contains few improvements suggested in the paper Improving the Neural Algorithm of Artistic Style
(http://arxiv.org/abs/1605.04603).
-----------------------------------------------------------------------------------------------------------------------
"""
THEANO_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels_notop.h5'
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
TH_19_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_th_dim_ordering_th_kernels_notop.h5'
TF_19_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5'
parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
help='Path to the image to transform.')
parser.add_argument('syle_image_paths', metavar='ref', nargs='+', type=str,
help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
help='Prefix for the saved results.')
parser.add_argument("--style_masks", type=str, default=None, nargs='+',
help='Masks for style images')
parser.add_argument("--content_mask", type=str, default=None,
help='Masks for the content image')
parser.add_argument("--color_mask", type=str, default=None,
help='Mask for color preservation')
parser.add_argument("--image_size", dest="img_size", default=400, type=int,
help='Minimum image size')
parser.add_argument("--content_weight", dest="content_weight", default=0.025, type=float,
help="Weight of content")
parser.add_argument("--style_weight", dest="style_weight", nargs='+', default=[1], type=float,
help="Weight of style, can be multiple for multiple styles")
parser.add_argument("--style_scale", dest="style_scale", default=1.0, type=float,
help="Scale the weighing of the style")
parser.add_argument("--total_variation_weight", dest="tv_weight", default=8.5e-5, type=float,
help="Total Variation weight")
parser.add_argument("--num_iter", dest="num_iter", default=10, type=int,
help="Number of iterations")
parser.add_argument("--model", default="vgg16", type=str,
help="Choices are 'vgg16' and 'vgg19'")
parser.add_argument("--content_loss_type", default=0, type=int,
help='Can be one of 0, 1 or 2. Readme contains the required information of each mode.')
parser.add_argument("--rescale_image", dest="rescale_image", default="False", type=str,
help="Rescale image after execution to original dimentions")
parser.add_argument("--rescale_method", dest="rescale_method", default="bilinear", type=str,
help="Rescale image algorithm")
parser.add_argument("--maintain_aspect_ratio", dest="maintain_aspect_ratio", default="True", type=str,
help="Maintain aspect ratio of loaded images")
parser.add_argument("--content_layer", dest="content_layer", default="conv5_2", type=str,
help="Content layer used for content loss.")
parser.add_argument("--init_image", dest="init_image", default="content", type=str,
help="Initial image used to generate the final image. Options are 'content', 'noise', or 'gray'")
parser.add_argument("--pool_type", dest="pool", default="max", type=str,
help='Pooling type. Can be "ave" for average pooling or "max" for max pooling')
parser.add_argument('--preserve_color', dest='color', default="False", type=str,
help='Preserve original color in image')
parser.add_argument('--min_improvement', default=0.0, type=float,
help='Defines minimum improvement required to continue script')
def str_to_bool(v):
return v.lower() in ("true", "yes", "t", "1")
''' Arguments '''
args = parser.parse_args()
base_image_path = args.base_image_path
style_reference_image_paths = args.syle_image_paths
result_prefix = args.result_prefix
style_image_paths = []
for style_image_path in style_reference_image_paths:
style_image_paths.append(style_image_path)
style_masks_present = args.style_masks is not None
mask_paths = []
if style_masks_present:
for mask_path in args.style_masks:
mask_paths.append(mask_path)
if style_masks_present:
assert len(style_image_paths) == len(mask_paths), "Wrong number of style masks provided.\n" \
"Number of style images = %d, \n" \
"Number of style mask paths = %d." % \
(len(style_image_paths), len(style_masks_present))
content_mask_present = args.content_mask is not None
content_mask_path = args.content_mask
color_mask_present = args.color_mask is not None
rescale_image = str_to_bool(args.rescale_image)
maintain_aspect_ratio = str_to_bool(args.maintain_aspect_ratio)
preserve_color = str_to_bool(args.color)
# these are the weights of the different loss components
content_weight = args.content_weight
total_variation_weight = args.tv_weight
style_weights = []
if len(style_image_paths) != len(args.style_weight):
print("Mismatch in number of style images provided and number of style weights provided. \n"
"Found %d style images and %d style weights. \n"
"Equally distributing weights to all other styles." % (len(style_image_paths), len(args.style_weight)))
weight_sum = sum(args.style_weight) * args.style_scale
count = len(style_image_paths)
for i in range(len(style_image_paths)):
style_weights.append(weight_sum / count)
else:
for style_weight in args.style_weight:
style_weights.append(style_weight * args.style_scale)
# Decide pooling function
pooltype = str(args.pool).lower()
assert pooltype in ["ave", "max"], 'Pooling argument is wrong. Needs to be either "ave" or "max".'
pooltype = 1 if pooltype == "ave" else 0
read_mode = "gray" if args.init_image == "gray" else "color"
# dimensions of the generated picture.
img_width = img_height = 0
img_WIDTH = img_HEIGHT = 0
aspect_ratio = 0
assert args.content_loss_type in [0, 1, 2], "Content Loss Type must be one of 0, 1 or 2"
# util function to open, resize and format pictures into appropriate tensors
def preprocess_image(image_path, load_dims=False, read_mode="color"):
global img_width, img_height, img_WIDTH, img_HEIGHT, aspect_ratio
mode = "RGB" if read_mode == "color" else "L"
img = imread(image_path, mode=mode) # Prevents crashes due to PNG images (ARGB)
if mode == "L":
# Expand the 1 channel grayscale to 3 channel grayscale image
temp = np.zeros(img.shape + (3,), dtype=np.uint8)
temp[:, :, 0] = img
temp[:, :, 1] = img.copy()
temp[:, :, 2] = img.copy()
img = temp
if load_dims:
img_WIDTH = img.shape[0]
img_HEIGHT = img.shape[1]
aspect_ratio = float(img_HEIGHT) / img_WIDTH
img_width = args.img_size
if maintain_aspect_ratio:
img_height = int(img_width * aspect_ratio)
else:
img_height = args.img_size
img = imresize(img, (img_width, img_height)).astype('float32')
# RGB -> BGR
img = img[:, :, ::-1]
img[:, :, 0] -= 103.939
img[:, :, 1] -= 116.779
img[:, :, 2] -= 123.68
if K.image_dim_ordering() == "th":
img = img.transpose((2, 0, 1)).astype('float32')
img = np.expand_dims(img, axis=0)
return img
# util function to convert a tensor into a valid image
def deprocess_image(x):
if K.image_dim_ordering() == "th":
x = x.reshape((3, img_width, img_height))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((img_width, img_height, 3))
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
# BGR -> RGB
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# util function to preserve image color
def original_color_transform(content, generated, mask=None):
generated = fromimage(toimage(generated, mode='RGB'), mode='YCbCr') # Convert to YCbCr color space
if mask is None:
generated[:, :, 1:] = content[:, :, 1:] # Generated CbCr = Content CbCr
else:
width, height, channels = generated.shape
for i in range(width):
for j in range(height):
if mask[i, j] == 1:
generated[i, j, 1:] = content[i, j, 1:]
generated = fromimage(toimage(generated, mode='YCbCr'), mode='RGB') # Convert to RGB color space
return generated
def load_mask(mask_path, shape, return_mask_img=False):
if K.image_dim_ordering() == "th":
_, channels, width, height = shape
else:
_, width, height, channels = shape
mask = imread(mask_path, mode="L") # Grayscale mask load
mask = imresize(mask, (width, height)).astype('float32')
# Perform binarization of mask
mask[mask <= 127] = 0
mask[mask > 128] = 255
max = np.amax(mask)
mask /= max
if return_mask_img: return mask
mask_shape = shape[1:]
mask_tensor = np.empty(mask_shape)
for i in range(channels):
if K.image_dim_ordering() == "th":
mask_tensor[i, :, :] = mask
else:
mask_tensor[:, :, i] = mask
return mask_tensor
def pooling_func(x):
if pooltype == 1:
return AveragePooling2D((2, 2), strides=(2, 2))(x)
else:
return MaxPooling2D((2, 2), strides=(2, 2))(x)
# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path, True, read_mode=read_mode))
style_reference_images = []
for style_path in style_image_paths:
style_reference_images.append(K.variable(preprocess_image(style_path)))
# this will contain our generated image
if K.image_dim_ordering() == 'th':
combination_image = K.placeholder((1, 3, img_width, img_height))
else:
combination_image = K.placeholder((1, img_width, img_height, 3))
image_tensors = [base_image]
for style_image_tensor in style_reference_images:
image_tensors.append(style_image_tensor)
image_tensors.append(combination_image)
nb_tensors = len(image_tensors)
nb_style_images = nb_tensors - 2 # Content and Output image not considered
# combine the various images into a single Keras tensor
input_tensor = K.concatenate(image_tensors, axis=0)
if K.image_dim_ordering() == "th":
shape = (nb_tensors, 3, img_width, img_height)
else:
shape = (nb_tensors, img_width, img_height, 3)
ip = Input(tensor=input_tensor, batch_shape=shape)
# build the VGG16 network with our 3 images as input
x = Convolution2D(64, (3, 3), activation='relu', name='conv1_1', padding='same')(ip)
x = Convolution2D(64, (3, 3), activation='relu', name='conv1_2', padding='same')(x)
x = pooling_func(x)
x = Convolution2D(128, (3, 3), activation='relu', name='conv2_1', padding='same')(x)
x = Convolution2D(128, (3, 3), activation='relu', name='conv2_2', padding='same')(x)
x = pooling_func(x)
x = Convolution2D(256, (3, 3), activation='relu', name='conv3_1', padding='same')(x)
x = Convolution2D(256, (3, 3), activation='relu', name='conv3_2', padding='same')(x)
x = Convolution2D(256, (3, 3), activation='relu', name='conv3_3', padding='same')(x)
if args.model == "vgg19":
x = Convolution2D(256, (3, 3), activation='relu', name='conv3_4', padding='same')(x)
x = pooling_func(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv4_1', padding='same')(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv4_2', padding='same')(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv4_3', padding='same')(x)
if args.model == "vgg19":
x = Convolution2D(512, (3, 3), activation='relu', name='conv4_4', padding='same')(x)
x = pooling_func(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv5_1', padding='same')(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv5_2', padding='same')(x)
x = Convolution2D(512, (3, 3), activation='relu', name='conv5_3', padding='same')(x)
if args.model == "vgg19":
x = Convolution2D(512, (3, 3), activation='relu', name='conv5_4', padding='same')(x)
x = pooling_func(x)
model = Model(ip, x)
if K.image_dim_ordering() == "th":
if args.model == "vgg19":
weights = get_file('vgg19_weights_th_dim_ordering_th_kernels_notop.h5', TH_19_WEIGHTS_PATH_NO_TOP, cache_subdir='models')
else:
weights = get_file('vgg16_weights_th_dim_ordering_th_kernels_notop.h5', THEANO_WEIGHTS_PATH_NO_TOP, cache_subdir='models')
else:
if args.model == "vgg19":
weights = get_file('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_19_WEIGHTS_PATH_NO_TOP, cache_subdir='models')
else:
weights = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models')
model.load_weights(weights)
if K.backend() == 'tensorflow' and K.image_dim_ordering() == "th":
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image dimension ordering convention '
'(`image_dim_ordering="th"`). '
'For best performance, set '
'`image_dim_ordering="tf"` in '
'your Keras config '
'at ~/.keras/keras.json.')
convert_all_kernels_in_model(model)
print('Model loaded.')
# get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
shape_dict = dict([(layer.name, layer.output_shape) for layer in model.layers])
# compute the neural style loss
# first we need to define 4 util functions
# Improvement 1
# the gram matrix of an image tensor (feature-wise outer product) using shifted activations
def gram_matrix(x):
assert K.ndim(x) == 3
if K.image_dim_ordering() == "th":
features = K.batch_flatten(x)
else:
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features - 1, K.transpose(features - 1))
return gram
# the "style loss" is designed to maintain
# the style of the reference image in the generated image.
# It is based on the gram matrices (which capture style) of
# feature maps from the style reference image
# and from the generated image
def style_loss(style, combination, mask_path=None, nb_channels=None):
assert K.ndim(style) == 3
assert K.ndim(combination) == 3
if content_mask_path is not None:
content_mask = K.variable(load_mask(content_mask_path, nb_channels))
combination = combination * K.stop_gradient(content_mask)
del content_mask
if mask_path is not None:
style_mask = K.variable(load_mask(mask_path, nb_channels))
style = style * K.stop_gradient(style_mask)
if content_mask_path is None:
combination = combination * K.stop_gradient(style_mask)
del style_mask
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_width * img_height
return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image
def content_loss(base, combination):
channel_dim = 0 if K.image_dim_ordering() == "th" else -1
try:
channels = K.int_shape(base)[channel_dim]
except TypeError:
channels = K.shape(base)[channel_dim]
size = img_width * img_height
if args.content_loss_type == 1:
multiplier = 1. / (2. * (channels ** 0.5) * (size ** 0.5))
elif args.content_loss_type == 2:
multiplier = 1. / (channels * size)
else:
multiplier = 1.
return multiplier * K.sum(K.square(combination - base))
# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent
def total_variation_loss(x):
assert K.ndim(x) == 4
if K.image_dim_ordering() == 'th':
a = K.square(x[:, :, :img_width - 1, :img_height - 1] - x[:, :, 1:, :img_height - 1])
b = K.square(x[:, :, :img_width - 1, :img_height - 1] - x[:, :, :img_width - 1, 1:])
else:
a = K.square(x[:, :img_width - 1, :img_height - 1, :] - x[:, 1:, :img_height - 1, :])
b = K.square(x[:, :img_width - 1, :img_height - 1, :] - x[:, :img_width - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
if args.model == "vgg19":
feature_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4',
'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4']
else:
feature_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3',
'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3']
# combine these loss functions into a single scalar
loss = K.variable(0.)
layer_features = outputs_dict[args.content_layer]
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[nb_tensors - 1, :, :, :]
loss = loss + content_weight * content_loss(base_image_features,
combination_features)
# Improvement 2
# Use all layers for style feature extraction and reconstruction
nb_layers = len(feature_layers) - 1
style_masks = []
if style_masks_present:
style_masks = mask_paths # If mask present, pass dictionary of masks to style loss
else:
style_masks = [None for _ in range(nb_style_images)] # If masks not present, pass None to the style loss
channel_index = 1 if K.image_dim_ordering() == "th" else -1
# Improvement 3 : Chained Inference without blurring
for i in range(len(feature_layers) - 1):
layer_features = outputs_dict[feature_layers[i]]
shape = shape_dict[feature_layers[i]]
combination_features = layer_features[nb_tensors - 1, :, :, :]
style_reference_features = layer_features[1:nb_tensors - 1, :, :, :]
sl1 = []
for j in range(nb_style_images):
sl1.append(style_loss(style_reference_features[j], combination_features, style_masks[j], shape))
layer_features = outputs_dict[feature_layers[i + 1]]
shape = shape_dict[feature_layers[i + 1]]
combination_features = layer_features[nb_tensors - 1, :, :, :]
style_reference_features = layer_features[1:nb_tensors - 1, :, :, :]
sl2 = []
for j in range(nb_style_images):
sl2.append(style_loss(style_reference_features[j], combination_features, style_masks[j], shape))
for j in range(nb_style_images):
sl = sl1[j] - sl2[j]
# Improvement 4
# Geometric weighted scaling of style loss
loss = loss + (style_weights[j] / (2 ** (nb_layers - (i + 1)))) * sl
loss = loss + total_variation_weight * total_variation_loss(combination_image)
# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)
outputs = [loss]
if type(grads) in {list, tuple}:
outputs += grads
else:
outputs.append(grads)
f_outputs = K.function([combination_image], outputs)
def eval_loss_and_grads(x):
if K.image_dim_ordering() == 'th':
x = x.reshape((1, 3, img_width, img_height))
else:
x = x.reshape((1, img_width, img_height, 3))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
evaluator = Evaluator()
# run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss
if "content" in args.init_image or "gray" in args.init_image:
x = preprocess_image(base_image_path, True, read_mode=read_mode)
elif "noise" in args.init_image:
x = np.random.uniform(0, 255, (1, img_width, img_height, 3)) - 128.
if K.image_dim_ordering() == "th":
x = x.transpose((0, 3, 1, 2))
else:
print("Using initial image : ", args.init_image)
x = preprocess_image(args.init_image, read_mode=read_mode)
# We require original image if we are to preserve color in YCbCr mode
if preserve_color:
content = imread(base_image_path, mode="YCbCr")
content = imresize(content, (img_width, img_height))
if color_mask_present:
if K.image_dim_ordering() == "th":
color_mask_shape = (None, None, img_width, img_height)
else:
color_mask_shape = (None, img_width, img_height, None)
color_mask = load_mask(args.color_mask, color_mask_shape, return_mask_img=True)
else:
color_mask = None
else:
color_mask = None
num_iter = args.num_iter
prev_min_val = -1
improvement_threshold = float(args.min_improvement)
for i in range(num_iter):
print("Starting iteration %d of %d" % ((i + 1), num_iter))
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20)
if prev_min_val == -1:
prev_min_val = min_val
improvement = (prev_min_val - min_val) / prev_min_val * 100
print("Current loss value:", min_val, " Improvement : %0.3f" % improvement, "%")
prev_min_val = min_val
# save current generated image
img = deprocess_image(x.copy())
if preserve_color and content is not None:
img = original_color_transform(content, img, mask=color_mask)
if not rescale_image:
img_ht = int(img_width * aspect_ratio)
print("Rescaling Image to (%d, %d)" % (img_width, img_ht))
img = imresize(img, (img_width, img_ht), interp=args.rescale_method)
if rescale_image:
print("Rescaling Image to (%d, %d)" % (img_WIDTH, img_HEIGHT))
img = imresize(img, (img_WIDTH, img_HEIGHT), interp=args.rescale_method)
fname = result_prefix + "_at_iteration_%d.png" % (i + 1)
imsave(fname, img)
end_time = time.time()
print("Image saved as", fname)
print("Iteration %d completed in %ds" % (i + 1, end_time - start_time))
if improvement_threshold is not 0.0:
if improvement < improvement_threshold and improvement is not 0.0:
print("Improvement (%f) is less than improvement threshold (%f). Early stopping script." %
(improvement, improvement_threshold))
exit()