|
20 | 20 |
|
21 | 21 | public class FloydWarshallSolver {
|
22 | 22 |
|
23 |
| - /* Example usage. */ |
24 |
| - |
25 |
| - // Creates a graph with n nodes. The adjacency matrix is constructed |
26 |
| - // such that the value of going from a node to itself is 0. |
27 |
| - public static double[][] createGraph(int n) { |
28 |
| - double[][] matrix = new double[n][n]; |
29 |
| - for (int i = 0; i < n; i++) { |
30 |
| - java.util.Arrays.fill(matrix[i], POSITIVE_INFINITY); |
31 |
| - matrix[i][i] = 0; |
32 |
| - } |
33 |
| - return matrix; |
34 |
| - } |
35 |
| - |
36 |
| - public static void main(String[] args) { |
37 |
| - // Construct graph. |
38 |
| - int n = 7; |
39 |
| - double[][] m = createGraph(n); |
40 |
| - |
41 |
| - // Add some edge values. |
42 |
| - m[0][1] = 2; |
43 |
| - m[0][2] = 5; |
44 |
| - m[0][6] = 10; |
45 |
| - m[1][2] = 2; |
46 |
| - m[1][4] = 11; |
47 |
| - m[2][6] = 2; |
48 |
| - m[6][5] = 11; |
49 |
| - m[4][5] = 1; |
50 |
| - m[5][4] = -2; |
51 |
| - |
52 |
| - FloydWarshallSolver solver = new FloydWarshallSolver(m); |
53 |
| - double[][] dist = solver.getApspMatrix(); |
54 |
| - |
55 |
| - for (int i = 0; i < n; i++) |
56 |
| - for (int j = 0; j < n; j++) |
57 |
| - System.out.printf("This shortest path from node %d to node %d is %.3f\n", i, j, dist[i][j]); |
58 |
| - |
59 |
| - // Prints: |
60 |
| - // This shortest path from node 0 to node 0 is 0.000 |
61 |
| - // This shortest path from node 0 to node 1 is 2.000 |
62 |
| - // This shortest path from node 0 to node 2 is 4.000 |
63 |
| - // This shortest path from node 0 to node 3 is Infinity |
64 |
| - // This shortest path from node 0 to node 4 is -Infinity |
65 |
| - // This shortest path from node 0 to node 5 is -Infinity |
66 |
| - // This shortest path from node 0 to node 6 is 6.000 |
67 |
| - // This shortest path from node 1 to node 0 is Infinity |
68 |
| - // This shortest path from node 1 to node 1 is 0.000 |
69 |
| - // This shortest path from node 1 to node 2 is 2.000 |
70 |
| - // This shortest path from node 1 to node 3 is Infinity |
71 |
| - // ... |
72 |
| - |
73 |
| - System.out.println(); |
74 |
| - |
75 |
| - // Reconstructs the shortest paths from all nodes to every other nodes. |
76 |
| - for (int i = 0; i < n; i++) { |
77 |
| - for (int j = 0; j < n; j++) { |
78 |
| - List<Integer> path = solver.reconstructShortestPath(i, j); |
79 |
| - String str; |
80 |
| - if (path == null) { |
81 |
| - str = "HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case)"; |
82 |
| - } else if (path.size() == 0) { |
83 |
| - str = String.format("DOES NOT EXIST (node %d doesn't reach node %d)", i, j); |
84 |
| - } else { |
85 |
| - str = String.join(" -> ", path.stream() |
86 |
| - .map(Object::toString) |
87 |
| - .collect(java.util.stream.Collectors.toList())); |
88 |
| - str = "is: [" + str + "]"; |
89 |
| - } |
90 |
| - |
91 |
| - System.out.printf("The shortest path from node %d to node %d %s\n", i, j, str); |
92 |
| - } |
93 |
| - } |
94 |
| - |
95 |
| - // Prints: |
96 |
| - // The shortest path from node 0 to node 0 is: [0] |
97 |
| - // The shortest path from node 0 to node 1 is: [0 -> 1] |
98 |
| - // The shortest path from node 0 to node 2 is: [0 -> 1 -> 2] |
99 |
| - // The shortest path from node 0 to node 3 DOES NOT EXIST (node 0 doesn't reach node 3) |
100 |
| - // The shortest path from node 0 to node 4 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
101 |
| - // The shortest path from node 0 to node 5 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
102 |
| - // The shortest path from node 0 to node 6 is: [0 -> 1 -> 2 -> 6] |
103 |
| - // The shortest path from node 1 to node 0 DOES NOT EXIST (node 1 doesn't reach node 0) |
104 |
| - // The shortest path from node 1 to node 1 is: [1] |
105 |
| - // The shortest path from node 1 to node 2 is: [1 -> 2] |
106 |
| - // The shortest path from node 1 to node 3 DOES NOT EXIST (node 1 doesn't reach node 3) |
107 |
| - // The shortest path from node 1 to node 4 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
108 |
| - // The shortest path from node 1 to node 5 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
109 |
| - // The shortest path from node 1 to node 6 is: [1 -> 2 -> 6] |
110 |
| - // The shortest path from node 2 to node 0 DOES NOT EXIST (node 2 doesn't reach node 0) |
111 |
| - // ... |
112 |
| - |
113 |
| - } |
114 |
| - |
115 | 23 | private int n;
|
116 | 24 | private boolean solved;
|
117 | 25 | private double[][] dp;
|
@@ -204,6 +112,96 @@ public List<Integer> reconstructShortestPath(int start, int end) {
|
204 | 112 | return path;
|
205 | 113 | }
|
206 | 114 |
|
| 115 | + /* Example usage. */ |
| 116 | + |
| 117 | + // Creates a graph with n nodes. The adjacency matrix is constructed |
| 118 | + // such that the value of going from a node to itself is 0. |
| 119 | + public static double[][] createGraph(int n) { |
| 120 | + double[][] matrix = new double[n][n]; |
| 121 | + for (int i = 0; i < n; i++) { |
| 122 | + java.util.Arrays.fill(matrix[i], POSITIVE_INFINITY); |
| 123 | + matrix[i][i] = 0; |
| 124 | + } |
| 125 | + return matrix; |
| 126 | + } |
| 127 | + |
| 128 | + public static void main(String[] args) { |
| 129 | + // Construct graph. |
| 130 | + int n = 7; |
| 131 | + double[][] m = createGraph(n); |
| 132 | + |
| 133 | + // Add some edge values. |
| 134 | + m[0][1] = 2; |
| 135 | + m[0][2] = 5; |
| 136 | + m[0][6] = 10; |
| 137 | + m[1][2] = 2; |
| 138 | + m[1][4] = 11; |
| 139 | + m[2][6] = 2; |
| 140 | + m[6][5] = 11; |
| 141 | + m[4][5] = 1; |
| 142 | + m[5][4] = -2; |
| 143 | + |
| 144 | + FloydWarshallSolver solver = new FloydWarshallSolver(m); |
| 145 | + double[][] dist = solver.getApspMatrix(); |
| 146 | + |
| 147 | + for (int i = 0; i < n; i++) |
| 148 | + for (int j = 0; j < n; j++) |
| 149 | + System.out.printf("This shortest path from node %d to node %d is %.3f\n", i, j, dist[i][j]); |
| 150 | + |
| 151 | + // Prints: |
| 152 | + // This shortest path from node 0 to node 0 is 0.000 |
| 153 | + // This shortest path from node 0 to node 1 is 2.000 |
| 154 | + // This shortest path from node 0 to node 2 is 4.000 |
| 155 | + // This shortest path from node 0 to node 3 is Infinity |
| 156 | + // This shortest path from node 0 to node 4 is -Infinity |
| 157 | + // This shortest path from node 0 to node 5 is -Infinity |
| 158 | + // This shortest path from node 0 to node 6 is 6.000 |
| 159 | + // This shortest path from node 1 to node 0 is Infinity |
| 160 | + // This shortest path from node 1 to node 1 is 0.000 |
| 161 | + // This shortest path from node 1 to node 2 is 2.000 |
| 162 | + // This shortest path from node 1 to node 3 is Infinity |
| 163 | + // ... |
| 164 | + |
| 165 | + System.out.println(); |
| 166 | + |
| 167 | + // Reconstructs the shortest paths from all nodes to every other nodes. |
| 168 | + for (int i = 0; i < n; i++) { |
| 169 | + for (int j = 0; j < n; j++) { |
| 170 | + List<Integer> path = solver.reconstructShortestPath(i, j); |
| 171 | + String str; |
| 172 | + if (path == null) { |
| 173 | + str = "HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case)"; |
| 174 | + } else if (path.size() == 0) { |
| 175 | + str = String.format("DOES NOT EXIST (node %d doesn't reach node %d)", i, j); |
| 176 | + } else { |
| 177 | + str = String.join(" -> ", path.stream() |
| 178 | + .map(Object::toString) |
| 179 | + .collect(java.util.stream.Collectors.toList())); |
| 180 | + str = "is: [" + str + "]"; |
| 181 | + } |
| 182 | + |
| 183 | + System.out.printf("The shortest path from node %d to node %d %s\n", i, j, str); |
| 184 | + } |
| 185 | + } |
| 186 | + |
| 187 | + // Prints: |
| 188 | + // The shortest path from node 0 to node 0 is: [0] |
| 189 | + // The shortest path from node 0 to node 1 is: [0 -> 1] |
| 190 | + // The shortest path from node 0 to node 2 is: [0 -> 1 -> 2] |
| 191 | + // The shortest path from node 0 to node 3 DOES NOT EXIST (node 0 doesn't reach node 3) |
| 192 | + // The shortest path from node 0 to node 4 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
| 193 | + // The shortest path from node 0 to node 5 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
| 194 | + // The shortest path from node 0 to node 6 is: [0 -> 1 -> 2 -> 6] |
| 195 | + // The shortest path from node 1 to node 0 DOES NOT EXIST (node 1 doesn't reach node 0) |
| 196 | + // The shortest path from node 1 to node 1 is: [1] |
| 197 | + // The shortest path from node 1 to node 2 is: [1 -> 2] |
| 198 | + // The shortest path from node 1 to node 3 DOES NOT EXIST (node 1 doesn't reach node 3) |
| 199 | + // The shortest path from node 1 to node 4 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
| 200 | + // The shortest path from node 1 to node 5 HAS AN ∞ NUMBER OF SOLUTIONS! (negative cycle case) |
| 201 | + // The shortest path from node 1 to node 6 is: [1 -> 2 -> 6] |
| 202 | + // The shortest path from node 2 to node 0 DOES NOT EXIST (node 2 doesn't reach node 0) |
| 203 | + // ... |
| 204 | + } |
207 | 205 | }
|
208 | 206 |
|
209 | 207 |
|
|
0 commit comments