diff --git a/.env b/.env new file mode 100644 index 0000000..21a41de --- /dev/null +++ b/.env @@ -0,0 +1,7 @@ +API-KEY="AIzaSyAk-vG70jpxWB17WnpOxqDtAdagBA1a9kg" +FIREBASE_PROJECT_ID="profile-data-dde0a" +FIREBASE_PRIVATE_KEY_ID="39b3f7d7d7bb9b4c7dcca432da4ee788328e1f64" +FIREBASE_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQDTqy0HqBlzOdkL\n5rentDHN14biqmDu7tSwpWV48Ww3Vfe0h5gmIV7MPletYo7Bdc/bjYQTLaj5UQXv\nTDQrRNO7U6a1DUFyGLJtuXbJm36i8m31ukPCozWm3HB2KDJJhU2SJv+7CjITaEu+\nsvbElR5MYyjZWQ36Ms7re4cmIESgIY6vmn8jUpchv7vbBq3grNzHFunBWFd+RlO9\nT0H0jT7R7w7rvkpM/muTKMPRv6bLtZ5igCbtCGTCn/MIyhVLn1efTzKhiDDb/R+E\n4hvxl3sTJaDFlFDa7RgTLtLZ0RZSgLdjodRkbrCIdZ/rCmS1vMyZWU3Aq7DgIOsN\nyyB+L+zXAgMBAAECggEAR39FiZWNay96EhwPoxUp0YbgqAW3El4X98cWfIDH9fUS\n46b9jLuu4ryYLxfgcpaR7G5j03qT3gsxPwB1irwH7Pm3kOZ2Wczf0FJaPoVIhE/x\nNpSBOOiaQc+qKS8wtUbSyfBkZ1BtU8Lh+vtGgWaBQnooHSqInx+0ZzRllUpHA/NU\nSwMVXeEs3PPIXVCitWIc0hfme34gTHOlXRk1VziWRf5tD6zHtgjH/g3vdY+wYWTY\nS37wbXXeLyR5PZ/CFh00b6vBYddOfh9xeX6ImagBVAVjGR2Qt07UMdp6eGONf4WB\nXXiyQZYeKQ/sgaVaiaL2xb81L8QxvbFQOkXT8Yv7wQKBgQD3ZQVIbsFQYd7XSx3s\n5veGDJtp9h63rgflDSZOl3widIoFFltKVkQwX6TiuPNIqVPniaSufE0c+dooTVkf\nJl1qF+P10bypf6n91DH3C6ns4LdpL1wi+mRTF3o/qHPZeyYlH3kYN38s+FfWqFZC\nQKVhqfNnlJF0n/fXy9H3YScQoQKBgQDbCAaTGtwFDQ0uPMvUwwXKI2W9cFhsLATp\n1v98xCQGPEoXxHVWIcOn6HOo/hJGXl0F0Ovkig3Xp/3c7u/z9hs3MgCdFu5Sb+1S\n38Q1Ci/Oy46wPk+oIwjWvPj5b013FwnjYP0DboksH3Gk7it89ckKmIzNZthQDNNf\nbOBaQe/ydwKBgAoZCn0pYCSayhC5lTAdQU8sZo+NpzVSGipkPgMJNdzmKtgIUJOZ\nL9FVphJHAE8f8jfKK3mfwzoCjMAGYDPgSgHRldFrzSqR9mtQ5PUzea0cgv/9GeKn\nm760f53nj0r6NtVfEn9FjKBWRqeRWWv83YM9/5xjuQgsm14oiJpzUbfhAoGAYk+v\n48diikHZcK+JLe57YseQmv8aMTNw4STHeFDxensFJrXflNGC6JLFl0yzFzKzvjCQ\nMPxmSi31HH2C5pXIkXW4IMpyHj5u34vgnY38920WlrThPC69gOVBO3Rh6NpGbfDS\nn/+1QkC62bStgGEx47elO2y2Gvgmx+YurVR7RvECgYBYj58vsxGI6ahPDjIbtDfV\nkeeS4GPgUrJO1NQ7Dt8Wa6Xt4YI42bH6GKjAG/rcBWSTUh8Z7Ea1Iz6E9dO8fGdS\nvt5xSwf1ZKXuPtCziJ5Ajqdwt1Hp9b2UsnXcoqixEG6yX3rK/6ehHUQ9S3zoRGEz\nudZmstCQ8c7EcKQpAYK1lA==\n-----END PRIVATE KEY-----\n" +FIREBASE_CLIENT_EMAIL="firebase-adminsdk-723lh@profile-data-dde0a.iam.gserviceaccount.com" +FIREBASE_CLIENT_ID="115904305166207640044" +FIREBASE_CLIENT_X509_CERT_URL="https://www.googleapis.com/oauth2/v1/certs" \ No newline at end of file diff --git a/KnowledgeBuilder.py b/KnowledgeBuilder.py new file mode 100644 index 0000000..609006e --- /dev/null +++ b/KnowledgeBuilder.py @@ -0,0 +1,625 @@ +from pathlib import Path +import speech_recognition as sr +import pdf2image +import gtts +import pandas as pd +import json +import traceback +from dotenv import load_dotenv +from src.mcqgenerator.utils import read_file, get_table_data +from src.mcqgenerator.logger import logging +import streamlit as st +from src.mcqgenerator.MCQGenerator import generate_evaluate_chain +from streamlit_ace import st_ace +from PIL import Image +import base64 +import streamlit as st +from streamlit_extras.let_it_rain import rain +from tempfile import NamedTemporaryFile +from streamlit_option_menu import option_menu +from streamlit_extras.mandatory_date_range import date_range_picker +import datetime +import os +import textwrap +import google.generativeai as genai +from IPython.display import display +from IPython.display import Markdown +from streamlit_lottie import st_lottie +import requests +import sys +import io +from streamlit_webrtc import webrtc_streamer, VideoProcessorBase +from youtube_transcript_api import YouTubeTranscriptApi +from util.common import get_gemini_response,get_leetcode_data,get_gemini_response1,load_lottieurl +import time + +global s +k=0 +genai.configure(api_key=os.getenv("API-KEY")) +t= ["Python", "Java", "C++", "JavaScript", "Ruby", "PHP", "Swift", "Kotlin", + "C#", "Go", "R", "TypeScript", "Scala", "Perl", "Objective-C", "Dart", + "Rust", "Haskell", "MATLAB", "SQL", "HTML/CSS", "React", "Angular", "Vue.js", + "Node.js", "Django", "Flask", "Spring", "ASP.NET", "Ruby on Rails"] +interview_topics = [ + # Core Python + "Python fundamentals (syntax, data types, control flow)", + "Object-oriented programming (OOP) concepts", + "Data structures (lists, tuples, dictionaries, sets)", + "Functions and modules", + "Exception handling", + + # Advanced Python + "Functional programming paradigms", + "Decorators and generators", + "Metaclasses", + "Concurrency and parallelism", + "Asynchronous programming", + + # Data Science and Machine Learning + "NumPy and Pandas", + "Data cleaning and preprocessing", + "Exploratory data analysis (EDA)", + "Machine learning algorithms and models", + "Model evaluation and deployment", + + # Web Development + "Django or Flask frameworks", + "RESTful APIs", + "Databases (SQL, NoSQL)", + "Front-end technologies (HTML, CSS, JavaScript)", + + # Software Engineering + "Design patterns", + "Algorithms and data structures", + "Software testing and debugging", + "Version control (Git)", + "Code optimization and refactoring", + + # Other + "Problem-solving and logical reasoning", + "System design", + "Project management", + "Open-source contributions", + "Soft skills (communication, teamwork, leadership)" +] +st.set_page_config(page_title="KnowledgeBuilder", page_icon='src/Logo College.png', layout="wide", initial_sidebar_state="auto", menu_items=None) +if "`current_theme`" not in st.session_state: + st.session_state.current_theme = "light" +current_dir = Path(__file__).parent if "__file__" in locals() else Path.cwd() +css_file = current_dir / "src" / "main.css" +with open(css_file) as f: + st.markdown("".format(f.read()), unsafe_allow_html=True) + +st.markdown(""" + +""", unsafe_allow_html=True) +EXAMPLE_NO = 1 +is_listening = False +recognizer = sr.Recognizer() +with open(r"Response.json", 'r') as file: + RESPONSE_JSON = json.load(file) +def input_pdf_setup(uploaded_file): + if uploaded_file is not None: + ## Convert the PDF to image + images=pdf2image.convert_from_bytes(uploaded_file.read()) + first_page=images[0] + # Convert to bytes + img_byte_arr = io.BytesIO() + first_page.save(img_byte_arr, format='JPEG') + img_byte_arr = img_byte_arr.getvalue() + + pdf_parts = [ + { + "mime_type": "image/jpeg", + "data": base64.b64encode(img_byte_arr).decode() # encode to base64 + } + ] + return pdf_parts + else: + raise FileNotFoundError("No file uploaded") + + + +def example(): + rain( + emoji="*", + font_size=40, + falling_speed=7, + animation_length="infinite", + ) + +def recognize_speech_from_microphone(): + with sr.Microphone() as source: + while is_listening: + st.write("Listening...") + audio = recognizer.listen(source) + try: + text = recognizer.recognize_google(audio) + + return text + except sr.UnknownValueError: + st.error("Google Speech Recognition could not understand audio") + except sr.RequestError as e: + st.error(f"Could not request results from Google Speech Recognition service; {e}") + +def get_transcript(video_url): + video_id = video_url.split("=")[1] + transcript_api = YouTubeTranscriptApi() + transcript = transcript_api.get_transcript(video_id) + return transcript +def pseudo_bold(text): + bold_text = ''.join(chr(0x1D5D4 + ord(c) - ord('A')) if 'A' <= c <= 'Z' else + chr(0x1D5EE + ord(c) - ord('a')) if 'a' <= c <= 'z' else c + for c in text) + return bold_text + + +def streamlit_menu(example=1): + if example == 1: + with st.sidebar: + selected = option_menu( + + menu_title="Knowledge Builder🧠", # required + options=["Road Map","Mock Interview","Code Editor"], # required + icons=["geo-alt-fill","bi bi-camera-video-fill","bi bi-code-slash"], # optional + menu_icon="cast", # optional + default_index=0, + ) + return selected + if example == 2: + selected = option_menu( + menu_title="Knowledge Builder", # required + options=["Road Map","Code Editor","Mock Interview","AI Bot"], # required + icons=["geo-alt-fill","bi bi-code-slash","bi bi-camera-video-fill","robot"], # optional + menu_icon="cast", # optional + default_index=0, + ) + return selected + if example == 3: + selected = option_menu( + menu_title="Knowledge Builder", # required + options=["Road Map","Ai bot","Code-editior","Question"], # required + icons=["geo-alt-fill","robot","bi bi-code-slash","bi bi-question-diamond-fill"], # optional + menu_icon="cast", # optional + default_index=0, + ) + return selected + return selected + if example == 4: + with st.sidebar: + selected = option_menu( + menu_title="Main Menu", # required + options=["Road Map", "Resume Builder", "Ai bot","ATS-DECTOR"], # required + icons=["geo-alt-fill", "file-person-fill", "robot"], # optional + menu_icon="cast", # optional + default_index=0, + # optional + ) + return selected + +def main(): + link="https://lottie.host/299688b5-e6b2-48ad-b2e9-2fa14b1fb117/TXqg2APXpL.json" + l=load_lottieurl(link) + col1, col2 = st.columns([1,9]) + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Mock Interview]💻💻", divider='rainbow') + if 'quiz_data' not in st.session_state: + st.session_state.quiz_data = None + if 'user_answers' not in st.session_state: + st.session_state.user_answers = {} + if 'quiz_submitted' not in st.session_state: + st.session_state.quiz_submitted = False + if 'score' not in st.session_state: + st.session_state.score = 0 + if 'show_error' not in st.session_state: + st.session_state.show_error = False + + def process_quiz_data(quiz_json): + """Convert the nested JSON structure to a more manageable format""" + processed_data = [] + quiz_dict = json.loads(quiz_json) if isinstance(quiz_json, str) else quiz_json + + for question_num, question_data in quiz_dict.items(): + processed_question = { + 'question_num': question_num, + 'mcq': question_data['mcq'], + 'options': question_data['options'], + 'correct': question_data['correct'] + } + processed_data.append(processed_question) + + return processed_data + + def calculate_score(): + correct_answers = 0 + total_questions = len(st.session_state.quiz_data) + for i, question in enumerate(st.session_state.quiz_data): + user_answer = st.session_state.user_answers.get(i) + if user_answer and user_answer != 'Select an option': + correct_answer = question['correct'] + if user_answer[0] == correct_answer: # Compare just the letter + correct_answers += 1 + return correct_answers, total_questions + + def check_answers_complete(): + """Check if all questions have been answered""" + total_questions = len(st.session_state.quiz_data) + answered_questions = sum(1 for ans in st.session_state.user_answers.values() + if ans != 'Select an option') + return answered_questions == total_questions + + # Fi le upload and quiz generation section + if not st.session_state.quiz_data: + with st.container(border=True): + col1, col2 = st.columns([1,1]) + with col1: + with st.form("user_inputs"): + + text = st.text_input("Which topic you want to learn",placeholder="Enter the topic") + video_link = st.text_input(" Enter the video link",placeholder="Enter the url") + uploaded_file = st.file_uploader("Upload a PDF or txt file") + mcq_count = 5 + subject = "resume" + tone = "Simple" + button = st.form_submit_button("Create MCQs") + + if video_link: + video_link=get_transcript(video_link) + if button and uploaded_file is not None and mcq_count and subject and tone: + with st.spinner("loading..."): + try: + + text2 = read_file(uploaded_file) + response = generate_evaluate_chain({ + "text": text2, + "number": mcq_count, + "subject": subject, + "tone": tone, + "response_json": json.dumps(RESPONSE_JSON) + }) + + except Exception as e: + traceback.print_exception(type(e), e, e.__traceback__) + st.error(e) + else: + if isinstance(response, dict): + quiz_json_start = response['quiz'].find('{') + quiz_json_end = response['quiz'].rfind('}') + 1 + quiz_json = response['quiz'][quiz_json_start:quiz_json_end] + if quiz_json: + try: + processed_quiz_data = process_quiz_data(quiz_json) + st.session_state.quiz_data = processed_quiz_data + st.session_state.review = response.get("review", "") + except Exception as e: + st.error(f"Error processing quiz data: {str(e)}") + else: + st.error("No valid quiz data found") + if button and text : + with st.spinner("loading..."): + try: + + response = generate_evaluate_chain({ + "text": text, + "number": mcq_count, + "subject": subject, + "tone": tone, + "response_json": json.dumps(RESPONSE_JSON) + }) + + except Exception as e: + traceback.print_exception(type(e), e, e.__traceback__) + st.error(e) + else: + if isinstance(response, dict): + quiz_json_start = response['quiz'].find('{') + quiz_json_end = response['quiz'].rfind('}') + 1 + quiz_json = response['quiz'][quiz_json_start:quiz_json_end] + if quiz_json: + try: + processed_quiz_data = process_quiz_data(quiz_json) + st.session_state.quiz_data = processed_quiz_data + st.session_state.review = response.get("review", "") + except Exception as e: + st.error(f"Error processing quiz data: {str(e)}") + else: + st.error("No valid quiz data found") + if button and video_link : + with st.spinner("loading..."): + try: + + response = generate_evaluate_chain({ + "text": video_link, + "number": mcq_count, + "subject": subject, + "tone": tone, + "response_json": json.dumps(RESPONSE_JSON) + }) + + except Exception as e: + traceback.print_exception(type(e), e, e.__traceback__) + st.error(e) + else: + if isinstance(response, dict): + quiz_json_start = response['quiz'].find('{') + quiz_json_end = response['quiz'].rfind('}') + 1 + quiz_json = response['quiz'][quiz_json_start:quiz_json_end] + if quiz_json: + try: + processed_quiz_data = process_quiz_data(quiz_json) + st.session_state.quiz_data = processed_quiz_data + st.session_state.review = response.get("review", "") + except Exception as e: + st.error(f"Error processing quiz data: {str(e)}") + else: + st.error("No valid quiz data found") + + with col2: + with st.container(border=True): + webrtc_streamer(key="sample") + ques=st.multiselect("Type of Question ? ", ["MCQ","Codding","Oral"], [], placeholder="Choose Language") + + if st.session_state.quiz_data is not None and not st.session_state.quiz_submitted: + st.subheader("Answer the following questions:") + + # Display error message if needed + if st.session_state.show_error: + st.error("Please answer all questions before submitting.") + st.session_state.show_error = False + + with st.form("quiz_form"): + for i, question in enumerate(st.session_state.quiz_data): + st.markdown(f"**Q{i+1}. {question['mcq']}**") + + # Create a list of options in the format "a) option_text" + options = [f"{opt_key}) {opt_value}" + for opt_key, opt_value in question['options'].items()] + + # Add an initial empty option to prevent default selection + options = options + + selected_option = st.radio( + f"select an option ", + options, + key=f"q_{i}", + index=0 # Set default to first option (Select an option) + ) + + st.session_state.user_answers[i] = selected_option + + submit_quiz = st.form_submit_button("Submit Quiz") + if submit_quiz: + if check_answers_complete(): + st.session_state.quiz_submitted = True + else: + st.session_state.show_error = True + st.experimental_rerun() + + + if st.session_state.quiz_submitted: + correct_answers, total_questions = calculate_score() + st.session_state.score = (correct_answers / total_questions) * 100 + + st.subheader("Quiz Results") + st.write(f"Your Score: {st.session_state.score:.2f}%") + st.write(f"Correct Answers: {correct_answers}/{total_questions}") + + st.subheader("Detailed Review") + for i, question in enumerate(st.session_state.quiz_data): + st.markdown(f"**Q{i+1}. {question['mcq']}**") + + # Display all options + for opt_key, opt_value in question['options'].items(): + if opt_key == question['correct']: + st.markdown(f"- {opt_key}) {opt_value} ✓ (Correct Answer)") + elif opt_key == st.session_state.user_answers[i][0]: # Compare with first character of answer + st.markdown(f"- {opt_key}) {opt_value} ❌ (Your Answer)") + else: + st.markdown(f"- {opt_key}) {opt_value}") + + st.markdown("---") + + def reset_quiz(): + st.session_state.quiz_data = None + st.session_state.user_answers = {} + st.session_state.quiz_submitted = False + st.session_state.score = 0 + st.session_state.show_error = False + if st.button("Start New Quiz"): + reset_quiz() + + + +selected = streamlit_menu(example=EXAMPLE_NO) +if 'questions' not in st.session_state: + st.session_state.questions = [] + +if selected == "Road Map": + example() + link="https://lottie.host/76509b4e-81b1-4877-9974-1fa506b294b1/ja7bfvhaEb.json" + l=load_lottieurl(link) + col1, col2 = st.columns([1,9]) # Create two columns + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Get Your Personalised Roadmap]😎🧑‍🏫", divider='rainbow') + with st.form(key='survey_form'): + col1, col2 = st.columns(2) # Create two columns + with col1: + text_stack_placeholder = pseudo_bold("Known Tech Stacks") + text_know = st.multiselect("Tech Stacks You Already Know", t, [], placeholder="choose tech stacks") + with col2: + End_Gole = st.multiselect("What is your End Goal ?", t, [], placeholder="choose end goal") + col1, col2 ,col3= st.columns(3) # Create two columns + with col1: + year=st.radio("Which year you are in", ("1st year 🥳", "2nd year 😃", "3rd year 😊","4th year 🎓")) + with col2: + learning_speed = st.radio("How would you describe your learning speed?", ("Fast learner🚀", "Medium learner🚣‍♀️", "Slow learner🐢")) + with col3: + difficulty = st.radio("At what level do you want to learn?", ("Beginner😃🟢", "Intermediate🙂🟡", "Advanced😎🔴")) + result = date_range_picker("Select a date range") + submit_button = st.form_submit_button(label='Submit') + if submit_button: + with st.spinner("Analyzing..."): + role = """ + You are a highly skilled AI trained to Make a Proper Roda Map personalised road map for college students . You are a professional and your Road Map should be constructive and helpful. + """ + instructions = f""" + student Name : Ritik + like the student {text_know} and it is his end goal to achive after foolwing you road map is {End_Gole} and the student is a {year} and his learning spped is {learning_speed} and he want to achive the gola at this levl{difficulty} and this all must be completed in the duration {result} + Your job is to proved a Proper Road Map and personalised : + + + 1. In this section you have to provide me:- + in a table format :- + 1. sno + 2. topic name for each day + 3. leet code question name (name of the question) on that at least 2 + 4. Youtube link to study that + 2. + Give : + some likes of youtube form which take take refreese both englis and hindi channeld first engilsh and second hindi + 3. Give : + some webstie link where he can read rome about the pyhton conetps + 4. + give: + some books name where he can study + 5. + any addition imformation you give which will be help full for the studes + 6. + Final review: + + At the end give a final review addition tips to while following this road Map. + """ + s = role + instructions + + s=get_gemini_response(s) + st.write(s) + +if selected=="Code Editor": + + link="https://lottie.host/d6e55231-a53c-4d19-a142-d71320fcd9a7/hbFKIhu1KA.json" + l=load_lottieurl(link) + col1, col2 = st.columns([1,9]) # Create two columns + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Code Editor]👨‍💻", divider='rainbow') + python_code = """def sum_of_list(l): + print(sum(l)) +sum_of_list([5,3,4,4])""" + java_code = """public class SumOfList { + public static void main(String[] args) { + int[] numbers = {5, 3, 4, 4}; + int sum = 0; + for (int number : numbers) { + sum += number; + } + System.out.println(sum); + } + }""" + cpp_code = """#include + + using namespace std; + + int main() { + int numbers[] = {5, 3, 4, 4}; + int sum = 0; + for (int i = 0; i < sizeof(numbers) / sizeof(numbers[0]); i++) { + sum += numbers[i]; + } + cout << sum << endl; + return 0; + }""" + + # Select language + selected_lang = st.sidebar.selectbox("Language", ["Python", "Java", "C++"]) + + # Set session state + st.session_state["selected_lang"] = selected_lang + s="" + with st.container(border=True): + with st.container(border=True): + if selected_lang == "Python": + editor_content = st_ace(value=python_code, language='python', theme='monokai', keybinding='vscode', font_size=14,key='run-code') + elif selected_lang == "Java": + editor_content = st_ace(value=java_code, language='java', theme='monokai', keybinding='vscode', font_size=14) + elif selected_lang == "C++": + editor_content = st_ace(value=cpp_code, language='cpp', theme='monokai', keybinding='vscode', font_size=14) + else: + st.write("Unsupported language selected.") + with st.container(border=True): + col1, col2, col3, col4= st.columns([1,1,1,2]) + with col1: + if st.button("Debug My code ",type="primary", help="Debug your code",use_container_width=True): + s="Debug my code "+str(editor_content)+"explain where I have done wrong and correcty and write the whole correct code again " + s=get_gemini_response(s) + #st.write(s) + with col2: + if st.button("Explain whole Code",type="primary", help="Explain the Code",use_container_width=True): + s="Explain my code "+str(editor_content)+"explain where I have done wrong and exaplin like you are explain to a noob" + s=get_gemini_response(s) + with col3: + if st.button("Time Complexity",type="primary", help="Time complexity",use_container_width=True): + s="Tell the time COmplextiy "+str(editor_content)+"explain who the time complixity is correct " + s=get_gemini_response(s) + #st.write(s) + with col4: + + p=st.multiselect("Convert Code into", ["C++","Python","Java"], [], placeholder="Choose Language") + if p: + s="convert the whole code into the language "+str(p)+str(editor_content)+"explain" + s=get_gemini_response(s) + + with st.container(border=True): + col1, col2 = st.columns([6,1]) + with col1: + text_input = st.text_input("This is a placeholder", + key="placeholder",) + with col2: + if st.button("🎤 Mic",type="primary", help="Speeck Now",use_container_width=True): + is_listening = True + voice_input = recognize_speech_from_microphone() + if voice_input: + text_input = voice_input + is_listening = False + + + + if editor_content: + output = io.StringIO() + sys.stdout = output + try: + exec(editor_content) + except Exception as e: + # Capture any exceptions + st.error(f"Error: {e}") + finally: + # Reset stdout + sys.stdout = sys.__stdout__ + + # Display the captured output + st.write("### Code Output") + st.text("The Output of the above code is : "+output.getvalue()) + + # Display the captured input + if text_input: + st.success(f"You said: {text_input}") + s="here is python code "+str(editor_content)+"so please do the change like this "+text_input+"and give me the wole answer in python only dont give me it in any english owrd explin it all in comments only " + + s=get_gemini_response(s) + s=s[9:-3] + + editor_content = st_ace(value=str(s), language='python', theme='monokai', keybinding='vscode', font_size=14) + + st.write(s) + +if selected== "Mock Interview": + main() + + diff --git a/README.md b/README.md index e088c0a..42486fe 100644 --- a/README.md +++ b/README.md @@ -1 +1,3 @@ -# Compare \ No newline at end of file +# CollegeBuddy + +#dfasd \ No newline at end of file diff --git a/Recording 2024-08-03 001234.mp4 b/Recording 2024-08-03 001234.mp4 new file mode 100644 index 0000000..10ec964 Binary files /dev/null and b/Recording 2024-08-03 001234.mp4 differ diff --git a/Response.json b/Response.json new file mode 100644 index 0000000..6463ff5 --- /dev/null +++ b/Response.json @@ -0,0 +1,32 @@ +{ + "1": { + "mcq": "multiple choice question", + "options": { + "a": "choice here", + "b": "choice here", + "c": "choice here", + "d": "choice here" + }, + "correct": "correct answer" + }, + "2": { + "mcq": "multiple choice question", + "options": { + "a": "choice here", + "b": "choice here", + "c": "choice here", + "d": "choice here" + }, + "correct": "correct answer" + }, + "3": { + "mcq": "multiple choice question", + "options": { + "a": "choice here", + "b": "choice here", + "c": "choice here", + "d": "choice here" + }, + "correct": "correct answer" + } +} \ No newline at end of file diff --git a/data/AbhiCV.pdf b/data/AbhiCV.pdf new file mode 100644 index 0000000..14777d6 Binary files /dev/null and b/data/AbhiCV.pdf differ diff --git a/data/sree.pdf b/data/sree.pdf new file mode 100644 index 0000000..98a73cf Binary files /dev/null and b/data/sree.pdf differ diff --git a/instance/video-meeting.db b/instance/video-meeting.db new file mode 100644 index 0000000..0c2eddc Binary files /dev/null and b/instance/video-meeting.db differ diff --git a/logs/01_02_2025_09_09_05.log b/logs/01_02_2025_09_09_05.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_02_2025_15_15_14.log b/logs/01_02_2025_15_15_14.log new file mode 100644 index 0000000..d8c61f6 --- /dev/null +++ b/logs/01_02_2025_15_15_14.log @@ -0,0 +1,204 @@ +[2025-01-02 15:14:02,030] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,056] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,116] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,253] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,253] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,317] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,534] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,534] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,535] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,598] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:14:02,598] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,682] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,688] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,746] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,746] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,863] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,863] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:22,864] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,174] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,175] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,389] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,389] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,486] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,487] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:43:25,488] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,382] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,382] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,449] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,449] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,553] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,553] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:23,553] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:24,920] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:24,920] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:24,963] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:24,963] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:25,052] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:25,054] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:44:25,058] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:10,916] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:10,918] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:10,954] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:10,954] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,021] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,021] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,022] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,871] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,871] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,913] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,913] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,987] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,987] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:11,987] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:52,892] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:52,894] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:52,940] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:52,940] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:53,009] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:53,011] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:53,011] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,139] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,139] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,173] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,173] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,228] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,228] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:45:54,228] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,691] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,695] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,731] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,731] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,843] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,843] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:07,844] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,050] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,050] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,184] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,185] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:09,186] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,595] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,608] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,637] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,637] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,717] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,718] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:26,718] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,671] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,671] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,714] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,716] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,812] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,813] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:46:27,813] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,520] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,527] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,566] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,566] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,639] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,639] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:00,639] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,786] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,787] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,841] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,841] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:50:01,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:19,858] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:19,866] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:19,933] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:19,934] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:20,080] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:20,080] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:20,082] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,332] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,333] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,397] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,397] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,525] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,526] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:22,527] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,753] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,754] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,794] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,794] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,871] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,871] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:43,872] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,760] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,760] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,798] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,798] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,871] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,872] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:44,872] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,816] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,818] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,853] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,854] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,918] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,918] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:51:59,919] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,833] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,834] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,875] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,875] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,949] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,949] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:52:00,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,826] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,831] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,874] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,875] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,958] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,958] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:13,959] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,175] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,176] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,224] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,225] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,324] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,324] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:53:15,325] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,284] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,286] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,305] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,350] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,350] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,387] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,644] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,645] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,645] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,691] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 15:55:31,691] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,234] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,240] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,285] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,285] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,372] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,373] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:00,374] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:01,892] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:01,893] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:01,936] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:01,937] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:02,034] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:02,034] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:02,036] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,203] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,217] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,322] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,323] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,507] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,507] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:23:58,508] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,320] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,321] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,399] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,400] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,584] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,586] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 16:24:03,586] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. diff --git a/logs/01_02_2025_18_18_11.log b/logs/01_02_2025_18_18_11.log new file mode 100644 index 0000000..c68ee26 --- /dev/null +++ b/logs/01_02_2025_18_18_11.log @@ -0,0 +1,135 @@ +[2025-01-02 19:14:44,123] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,155] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,310] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,310] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,527] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,527] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:44,532] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,317] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,326] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,421] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,422] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,612] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,612] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:14:47,613] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,622] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,634] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,667] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,753] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,753] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:12,799] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:13,098] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:13,098] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:13,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:13,151] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:52:13,153] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,216] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,217] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,232] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,267] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,268] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,284] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,364] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,366] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,366] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,387] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:16,387] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,564] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,564] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,580] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,624] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,624] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,654] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,803] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,804] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,804] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,863] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:28,864] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,321] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,322] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,338] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,460] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,460] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,509] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,594] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,594] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,597] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,669] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:56:42,669] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:36,949] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:36,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:36,962] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:36,988] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:36,988] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,002] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,085] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,085] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,086] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,114] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:37,115] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,035] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,037] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,046] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,073] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,074] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,088] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,167] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,168] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,168] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,193] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:57:51,193] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,474] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,476] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,488] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,525] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,525] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,542] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,633] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,634] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,634] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,659] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:01,659] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,134] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,135] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,145] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,170] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,170] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,182] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,250] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,251] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,251] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,274] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:13,274] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,884] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,888] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,902] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,933] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,933] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:21,946] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:22,049] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:22,049] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:22,050] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:22,083] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:22,084] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,397] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,400] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,429] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,480] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,480] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,500] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,643] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,643] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,644] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,680] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:34,681] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,844] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,846] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,862] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,915] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,916] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:49,951] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:50,068] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:50,068] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:50,069] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:50,099] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-02 19:58:50,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. diff --git a/logs/01_03_2025_15_15_04.log b/logs/01_03_2025_15_15_04.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_18_18_06.log b/logs/01_03_2025_18_18_06.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_19_19_11.log b/logs/01_03_2025_19_19_11.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_20_20_49.log b/logs/01_03_2025_20_20_49.log new file mode 100644 index 0000000..38117ee --- /dev/null +++ b/logs/01_03_2025_20_20_49.log @@ -0,0 +1,106 @@ +[2025-01-03 20:09:26,739] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:26,777] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:26,820] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,036] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,038] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,085] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,396] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,397] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,397] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,497] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:09:27,499] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:49,942] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:49,950] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:50,038] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:50,040] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:50,246] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:50,248] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:50,250] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:52,768] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:52,769] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:52,877] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:52,879] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:53,043] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:53,043] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:48:53,043] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,775] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,777] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,840] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,842] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,966] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,968] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:28,968] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,531] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,531] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,620] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,620] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,803] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,839] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:50:31,841] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,375] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,379] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,456] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,456] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,609] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,609] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:17,609] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,112] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,112] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,167] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,167] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,302] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,303] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:20,303] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,210] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,214] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,240] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,311] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,314] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,350] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,564] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,564] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,566] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,628] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:51:39,630] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,699] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,703] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,786] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,786] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,973] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,978] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:21,980] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,250] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,250] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,331] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,331] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,578] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,578] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:52:24,578] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,682] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,718] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,788] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,788] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,923] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,923] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:27,925] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,479] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,481] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,557] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,559] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,743] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,745] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:30,745] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,276] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,280] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,341] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,341] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,478] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,478] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:47,479] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:49,820] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:49,820] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:49,904] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:49,906] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:50,099] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:50,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 20:53:50,100] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. diff --git a/logs/01_03_2025_21_21_09.log b/logs/01_03_2025_21_21_09.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_21_21_51.log b/logs/01_03_2025_21_21_51.log new file mode 100644 index 0000000..d9e3a18 --- /dev/null +++ b/logs/01_03_2025_21_21_51.log @@ -0,0 +1,11 @@ +[2025-01-03 21:38:22,830] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:22,860] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:22,897] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,073] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,073] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,168] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,508] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,508] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,510] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,632] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. +[2025-01-03 21:38:23,634] 1371 matplotlib.font_manager - WARNING - findfont: Font family 'Helvetica' not found. diff --git a/logs/01_03_2025_22_22_33.log b/logs/01_03_2025_22_22_33.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_23_23_21.log b/logs/01_03_2025_23_23_21.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_03_2025_23_23_53.log b/logs/01_03_2025_23_23_53.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_04_2025_00_00_00.log b/logs/01_04_2025_00_00_00.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_04_2025_00_00_08.log b/logs/01_04_2025_00_00_08.log new file mode 100644 index 0000000..e69de29 diff --git a/logs/01_04_2025_00_00_27.log b/logs/01_04_2025_00_00_27.log new file mode 100644 index 0000000..e69de29 diff --git a/pages/__pycache__/profile.cpython-312.pyc b/pages/__pycache__/profile.cpython-312.pyc new file mode 100644 index 0000000..300fff2 Binary files /dev/null and b/pages/__pycache__/profile.cpython-312.pyc differ diff --git a/pages/assets/CV.docx b/pages/assets/CV.docx new file mode 100644 index 0000000..b55371a Binary files /dev/null and b/pages/assets/CV.docx differ diff --git a/pages/assets/CV.pdf b/pages/assets/CV.pdf new file mode 100644 index 0000000..76b4577 Binary files /dev/null and b/pages/assets/CV.pdf differ diff --git a/pages/assets/demo1.png b/pages/assets/demo1.png new file mode 100644 index 0000000..415a065 Binary files /dev/null and b/pages/assets/demo1.png differ diff --git a/pages/assets/demo2.png b/pages/assets/demo2.png new file mode 100644 index 0000000..fc68fa0 Binary files /dev/null and b/pages/assets/demo2.png differ diff --git a/pages/assets/demo3.png b/pages/assets/demo3.png new file mode 100644 index 0000000..bc19750 Binary files /dev/null and b/pages/assets/demo3.png differ diff --git a/pages/assets/profile-pic.png b/pages/assets/profile-pic.png new file mode 100644 index 0000000..ead0d84 Binary files /dev/null and b/pages/assets/profile-pic.png differ diff --git a/pages/assets/r1.jpg b/pages/assets/r1.jpg new file mode 100644 index 0000000..4314b78 Binary files /dev/null and b/pages/assets/r1.jpg differ diff --git a/pages/assets/r2.jpg b/pages/assets/r2.jpg new file mode 100644 index 0000000..16341d8 Binary files /dev/null and b/pages/assets/r2.jpg differ diff --git a/pages/assets/r3.jpg b/pages/assets/r3.jpg new file mode 100644 index 0000000..039b02e Binary files /dev/null and b/pages/assets/r3.jpg differ diff --git a/pages/assets/r4.jpg b/pages/assets/r4.jpg new file mode 100644 index 0000000..9fc69db Binary files /dev/null and b/pages/assets/r4.jpg differ diff --git a/pages/cache/9cd270ab9065bc11586e724193305eb3f884115c.json b/pages/cache/9cd270ab9065bc11586e724193305eb3f884115c.json new file mode 100644 index 0000000..d6463e5 --- /dev/null +++ b/pages/cache/9cd270ab9065bc11586e724193305eb3f884115c.json @@ -0,0 +1 @@ +[{"place_id": 237458182, "licence": "Data \u00a9 OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright", "osm_type": "way", "osm_id": 244524327, "lat": "22.188424400000002", "lon": "113.5435057449533", "class": "leisure", "type": "park", "place_rank": 24, "importance": 0.303230229325644, "addresstype": "park", "name": "\u4e9e\u99ac\u5587\u524d\u5730 Pra\u00e7a de Ferreira do Amaral", "display_name": "\u4e9e\u99ac\u5587\u524d\u5730 Pra\u00e7a de Ferreira do Amaral, \u65b0\u53e3\u5cb8\u586b\u6d77\u5340 Zona de Aterros do Porto Exterior, Grand Beach, S\u00e9, Municipality of Macau, Macau, China", "boundingbox": ["22.1878619", "22.1889405", "113.5429242", "113.5440887"]}] \ No newline at end of file diff --git a/pages/styles/main.css b/pages/styles/main.css new file mode 100644 index 0000000..8bbe45d --- /dev/null +++ b/pages/styles/main.css @@ -0,0 +1,27 @@ +@import url('https://fonts.googleapis.com/css2?family=Readex+Pro:wght@300;400;500;600;700&display=swap'); + + +* {font-family: 'Readex Pro';} + + +a { + text-decoration: none; + color: white !important; + font-weight: 500; +} + +a:hover { + color: #55d336 !important; + text-decoration: none; +} +body { + background-image: linear-gradient(to right, #f06b6b, #ffdb58); + background-size: 100% 100%; + background-attachment: fixed; + } +ul {list-style-type: none;} + +hr { + margin-top: 0px; + margin-bottom: 5%; +} diff --git "a/pages/\360\237\227\203\357\270\217JobHackHub.py" "b/pages/\360\237\227\203\357\270\217JobHackHub.py" new file mode 100644 index 0000000..46c6eec --- /dev/null +++ "b/pages/\360\237\227\203\357\270\217JobHackHub.py" @@ -0,0 +1,245 @@ +from pathlib import Path +from streamlit_ace import st_ace +from PIL import Image +import streamlit as st +from streamlit_option_menu import option_menu +import datetime +import os +import textwrap +import google.generativeai as genai +from IPython.display import display +from IPython.display import Markdown +from streamlit_lottie import st_lottie +import requests +import sys +import io +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +import plotly.express as px +import speech_recognition as sr +from streamlit_extras.echo_expander import echo_expander +from bs4 import BeautifulSoup +global s +k=0 +st.set_page_config(page_title="KnowledgeBuilder", page_icon='src/Logo College.png', layout="wide", initial_sidebar_state="auto", menu_items=None) +EXAMPLE_NO = 1 +recognizer = sr.Recognizer() +def get_gemini_response(question): + model = genai.GenerativeModel('gemini-pro') + response = model.generate_content(question) + return response.text +def load_lottieurl(url: str): + r = requests.get(url) + if r.status_code != 200: + return None + return r.json() +def recognize_speech_from_microphone(): + with sr.Microphone() as source: + st.write("Listening...") + audio = recognizer.listen(source) + try: + text = recognizer.recognize_google(audio) + st.success(f"You said: {text}") + return text + except sr.UnknownValueError: + st.error("Google Speech Recognition could not understand audio") + except sr.RequestError as e: + st.error(f"Could not request results from Google Speech Recognition service; {e}") +def to_markdown(text): + text = text.replace('•', ' *') + return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True)) +def pseudo_bold(text): + bold_text = ''.join(chr(0x1D5D4 + ord(c) - ord('A')) if 'A' <= c <= 'Z' else + chr(0x1D5EE + ord(c) - ord('a')) if 'a' <= c <= 'z' else c + for c in text) + return bold_text +def streamlit_menu(example=1): + if example == 1: + with st.sidebar: + selected = option_menu( + menu_title="Job Portal 💼", # required + options=["Hackthons", "Jobs", "Exams","Lectures"], # required + icons=["bi bi-bag", "bi bi-bag-check-fill", "bi bi-book",], # optional + menu_icon="cast", # optional + default_index=0, + ) + return selected + if example == 2: + with st.sidebar: + selected = option_menu( + menu_title="Main Menu", # required + options=["Road Map", "Resume Builder", "Ai bot","ATS-DECTOR"], # required + icons=["geo-alt-fill", "file-person-fill", "robot"], # optional + menu_icon="cast", # optional + default_index=0, + ) + return selected + if example == 3: + with st.sidebar: + selected = option_menu( + menu_title="Main Menu", # required + options=["Road Map", "Resume Builder", "Ai bot","ATS-DECTOR"], # required + icons=["geo-alt-fill", "file-person-fill", "robot"], # optional + menu_icon="cast", # optional + default_index=0, + # optional + ) + return selected + if example == 4: + with st.sidebar: + selected = option_menu( + menu_title="Main Menu", # required + options=["Road Map", "Resume Builder", "Ai bot","ATS-DECTOR"], # required + icons=["geo-alt-fill", "file-person-fill", "robot"], # optional + menu_icon="cast", # optional + default_index=0, + # optional + ) + return selected +def hactkon(): + url = 'https://hack2skill.com/dashboard/' + hackathons = [] + response = requests.get(url) + if response.status_code == 200: + soup = BeautifulSoup(response.content, 'html.parser') + + # Find cards containing hackathon details + card_elements = soup.find_all('div', class_='card') # Assuming card structure + + for card in card_elements: + # Extract data from within each card + name_element = card.find('div', class_='card-body') # Customize selector if needed + name = name_element.get_text(strip=True) if name_element else None + + description_element = card.find('p') # Adjust selector if necessary + description = description_element.get_text(strip=True) if description_element else None + + mode_element = card.find('span', class_='text-success') # Adapt for your mode class + mode = mode_element.get_text(strip=True) if mode_element else None + + image_element = card.find('img', class_='card-img-top') # Modify based on image element + image_url = image_element.get('src') if image_element else None + + # Create and append hackathon dictionary + hackathons.append({ + 'name': name, + 'description': description, + 'mode': mode, + 'image_url': image_url + }) + else: + print(f"Failed to retrieve the webpage. Status code: {response.status_code}") + + return hackathons +selected = streamlit_menu(example=EXAMPLE_NO) +if 'questions' not in st.session_state: + st.session_state.questions = [] +if selected == "Hackthons": + hackathons=hactkon() + st.title("Hackathons Listings") + + # Create columns for each hackathon + for hackathon in hackathons[:]: + col1, col2, col3 = st.columns([1, 2, 1]) + + # Column 1: Image + with col1: + st.image(hackathon["image_url"], use_container_width=True) + + # Column 2: Details + with col2: + s=hackathon["name"] + k=hackathon['description'][:5] + st.header(s[:s.find(k)]) + + with st.expander("Read more"): + st.write(f"**Description :** {hackathon['description']}") + st.write(hackathon["mode"]) + + + # Column 3: Apply button + with col3: + if st.button("Apply Now", key=hackathon["name"]): + pass + + st.markdown("---") + + # Main content of the Streamlit app + st.write("Explore and apply to the latest hackathons listed above.") +if selected == "Jobs": + + # Sample data + hackathons = [ + { + "name": "Hackathon 1", + "image_url": "https://via.placeholder.com/150", + "timeline": "Jan 1, 2024 - Jan 3, 2024", + "prizes": "1st: $1000, 2nd: $500", + "details": "This is a brief description of Hackathon 1." + }, + { + "name": "Hackathon 2", + "image_url": "https://via.placeholder.com/150", + "timeline": "Feb 10, 2024 - Feb 12, 2024", + "prizes": "1st: $2000, 2nd: $1000", + "details": "This is a brief description of Hackathon 2." + }, + { + "name": "Hackathon 3", + "image_url": "https://via.placeholder.com/150", + "timeline": "Mar 15, 2024 - Mar 17, 2024", + "prizes": "1st: $3000, 2nd: $1500", + "details": "This is a brief description of Hackathon 3." + } + ] + + # Title of the app + st.title("Hackathon Listings") + + # Create columns for each hackathon + for hackathon in hackathons: + col1, col2, col3 = st.columns([1, 2, 1]) + + # Column 1: Image + with col1: + st.image(hackathon["image_url"], use_column_width=True) + + # Column 2: Details + with col2: + st.header(hackathon["name"]) + st.write(f"**Timeline:** {hackathon['timeline']}") + st.write(f"**Prizes:** {hackathon['prizes']}") + st.write(hackathon["details"]) + + # Column 3: Apply button + with col3: + st.button("Apply Now", key=hackathon["name"]) + + st.markdown("---") + + # Main content of the Streamlit app + st.write("Explore and apply to the latest hackathons listed above.") +if selected == "Exams": + + st.title("💬 Chatbot") + + if "messages" not in st.session_state: + st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}] + + for msg in st.session_state.messages: + st.chat_message(msg["role"]).write(msg["content"]) + + if prompt := st.chat_input(): + + + + st.session_state.messages.append({"role": "user", "content": prompt}) + st.chat_message("user").write(prompt) + msg=get_gemini_response(prompt) + st.session_state.messages.append({"role": "assistant", "content": msg}) + st.chat_message("assistant").write(msg) +if selected == "Lectures": + + pass \ No newline at end of file diff --git "a/pages/\360\237\247\221\342\200\215\360\237\217\253ProfileBuilder.py" "b/pages/\360\237\247\221\342\200\215\360\237\217\253ProfileBuilder.py" new file mode 100644 index 0000000..3372cb6 --- /dev/null +++ "b/pages/\360\237\247\221\342\200\215\360\237\217\253ProfileBuilder.py" @@ -0,0 +1,1341 @@ +import subprocess +import plotly.express as px +from datetime import date +from pathlib import Path +import shutil +import speech_recognition as sr +import pdf2image +import gtts +import sqlite3 +import re +import pandas as pd +import streamlit.components.v1 as components +from local_components import card_container +import json +import traceback +import calplot +from dotenv import load_dotenv +import PIL +import PyPDF2 +import re +from streamlit_ace import st_ace +from PIL import Image +import streamlit_shadcn_ui as ui +import base64 +from bs4 import BeautifulSoup +from datetime import datetime +import streamlit as st +from streamlit_extras.let_it_rain import rain +from tempfile import NamedTemporaryFile +from streamlit_option_menu import option_menu +from streamlit_extras.mandatory_date_range import date_range_picker +import datetime +import os +import google.generativeai as genai +import matplotlib.pyplot as plt +from IPython.display import display +from local_components import card_container +from IPython.display import Markdown +from streamlit_lottie import st_lottie +import requests +import sys +import io +import time +import plotly.graph_objects as go +from util.common import get_gemini_response,get_leetcode_data,get_gemini_response1,load_lottieurl +from util.leetcode import get_leetcode_data1, RQuestion, skills, let_Badges, graph,get_active_days_for_users,get_active_days,get_ratings_for_users,get_leetcode_contest_rating +from util.codeforces import get_user_data, get_contest_data +from util.github import run_gitleaks, count_lines_of_code, clone_and_count_lines, is_repo_processed, get_all_user_repos, update_progress_file +from util.login import add_user, authenticate_user, is_valid_password,listofuser,list_profiles,listofcollege,totalusers +import firebase_admin +from firebase_admin import credentials +from firebase_admin import db +import time + +if not firebase_admin._apps: + + service_account_info = { + "type": "service_account", + "project_id": os.environ.get("FIREBASE_PROJECT_ID"), + "private_key_id": os.environ.get("FIREBASE_PRIVATE_KEY_ID"), + "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQDTqy0HqBlzOdkL\n5rentDHN14biqmDu7tSwpWV48Ww3Vfe0h5gmIV7MPletYo7Bdc/bjYQTLaj5UQXv\nTDQrRNO7U6a1DUFyGLJtuXbJm36i8m31ukPCozWm3HB2KDJJhU2SJv+7CjITaEu+\nsvbElR5MYyjZWQ36Ms7re4cmIESgIY6vmn8jUpchv7vbBq3grNzHFunBWFd+RlO9\nT0H0jT7R7w7rvkpM/muTKMPRv6bLtZ5igCbtCGTCn/MIyhVLn1efTzKhiDDb/R+E\n4hvxl3sTJaDFlFDa7RgTLtLZ0RZSgLdjodRkbrCIdZ/rCmS1vMyZWU3Aq7DgIOsN\nyyB+L+zXAgMBAAECggEAR39FiZWNay96EhwPoxUp0YbgqAW3El4X98cWfIDH9fUS\n46b9jLuu4ryYLxfgcpaR7G5j03qT3gsxPwB1irwH7Pm3kOZ2Wczf0FJaPoVIhE/x\nNpSBOOiaQc+qKS8wtUbSyfBkZ1BtU8Lh+vtGgWaBQnooHSqInx+0ZzRllUpHA/NU\nSwMVXeEs3PPIXVCitWIc0hfme34gTHOlXRk1VziWRf5tD6zHtgjH/g3vdY+wYWTY\nS37wbXXeLyR5PZ/CFh00b6vBYddOfh9xeX6ImagBVAVjGR2Qt07UMdp6eGONf4WB\nXXiyQZYeKQ/sgaVaiaL2xb81L8QxvbFQOkXT8Yv7wQKBgQD3ZQVIbsFQYd7XSx3s\n5veGDJtp9h63rgflDSZOl3widIoFFltKVkQwX6TiuPNIqVPniaSufE0c+dooTVkf\nJl1qF+P10bypf6n91DH3C6ns4LdpL1wi+mRTF3o/qHPZeyYlH3kYN38s+FfWqFZC\nQKVhqfNnlJF0n/fXy9H3YScQoQKBgQDbCAaTGtwFDQ0uPMvUwwXKI2W9cFhsLATp\n1v98xCQGPEoXxHVWIcOn6HOo/hJGXl0F0Ovkig3Xp/3c7u/z9hs3MgCdFu5Sb+1S\n38Q1Ci/Oy46wPk+oIwjWvPj5b013FwnjYP0DboksH3Gk7it89ckKmIzNZthQDNNf\nbOBaQe/ydwKBgAoZCn0pYCSayhC5lTAdQU8sZo+NpzVSGipkPgMJNdzmKtgIUJOZ\nL9FVphJHAE8f8jfKK3mfwzoCjMAGYDPgSgHRldFrzSqR9mtQ5PUzea0cgv/9GeKn\nm760f53nj0r6NtVfEn9FjKBWRqeRWWv83YM9/5xjuQgsm14oiJpzUbfhAoGAYk+v\n48diikHZcK+JLe57YseQmv8aMTNw4STHeFDxensFJrXflNGC6JLFl0yzFzKzvjCQ\nMPxmSi31HH2C5pXIkXW4IMpyHj5u34vgnY38920WlrThPC69gOVBO3Rh6NpGbfDS\nn/+1QkC62bStgGEx47elO2y2Gvgmx+YurVR7RvECgYBYj58vsxGI6ahPDjIbtDfV\nkeeS4GPgUrJO1NQ7Dt8Wa6Xt4YI42bH6GKjAG/rcBWSTUh8Z7Ea1Iz6E9dO8fGdS\nvt5xSwf1ZKXuPtCziJ5Ajqdwt1Hp9b2UsnXcoqixEG6yX3rK/6ehHUQ9S3zoRGEz\nudZmstCQ8c7EcKQpAYK1lA==\n-----END PRIVATE KEY-----\n", # Important: handle newlines + "client_email": os.environ.get("FIREBASE_CLIENT_EMAIL"), + "client_id": os.environ.get("FIREBASE_CLIENT_ID"), + "auth_uri": "https://accounts.google.com/o/oauth2/auth", + "token_uri": "https://oauth2.googleapis.com/token", + "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", + "client_x509_cert_url": os.environ.get("FIREBASE_CLIENT_X509_CERT_URL"), + "universe_domain": "googleapis.com" + } + cred = credentials.Certificate(service_account_info) + firebase_admin.initialize_app(cred, { + 'databaseURL': "https://profile-data-dde0a-default-rtdb.firebaseio.com/" + }) + +global s +k=0 +api_key=os.getenv("API-KEY") +genai.configure(api_key=os.getenv("API-KEY")) +t=[ "Python", "Java", "C++", "JavaScript", "Ruby", "PHP", "Swift", "Kotlin", + "C#", "Go", "R", "TypeScript", "Scala", "Perl", "Objective-C", "Dart", + "Rust", "Haskell", "MATLAB", "SQL", "HTML/CSS", "React", "Angular", "Vue.js", + "Node.js", "Django", "Flask", "Spring", "ASP.NET", "Ruby on Rails"] + +EXAMPLE_NO = 1 + + +st.set_page_config(page_title="KnowledgeBuilder", page_icon='src/Logo College.png', layout="wide", initial_sidebar_state="auto", menu_items=None) +if "current_theme" not in st.session_state: + st.session_state.current_theme = "light" + +def process_data(data): + rows = [] + for category, topics in data.items(): + for topic in topics: + rows.append( + {"Category": category.capitalize(), "Topic": topic["tagName"], "Problems Solved": topic["problemsSolved"]} + ) + return pd.DataFrame(rows) +def streamlit_menu(example=1): + if example == 1: + with st.sidebar: + selected = option_menu( + menu_title="Profile - Builder ", # required + options=["Register","Dashboard", "1vs1","LinkedIn Profile","collage","ATS Detector"], # required + icons=["bi bi-person-lines-fill","bi bi-border-all", "bi bi-binoculars-fill", "bi bi-linkedin","bi bi-envelope-at","bi bi-file-person"], # optional + menu_icon="cast", # optional + + default_index=0, + ) + return selected + +selected = streamlit_menu(example=EXAMPLE_NO) + +if 'questions' not in st.session_state: + st.session_state.questions = [] + + +if selected == "Register": + global username + with st.container(border=True): + st.title("Login / Signup") + option = st.selectbox("Login/Signup/Update", ["Sign up", "Login","Update"]) + + if option == "Sign up": + # Input fields + username = st.text_input("Username", placeholder="Enter your username (must be unique)") + password = st.text_input("Password", placeholder="Enter your password", type="password") + with st.container(): + col1, col2 = st.columns(2) + + with col1: + st.subheader("Profile Information") + codechef_id = st.text_input("CodeChef ID", placeholder="Enter your CodeChef username") + leetcode_id = st.text_input("LeetCode ID", placeholder="Enter your LeetCode username") + github_id = st.text_input("GitHub ID", placeholder="Enter your GitHub username") + codeforces_id = st.text_input("Codeforces ID", placeholder="Enter your Codeforces username") + + with col2: + st.subheader("Additional Information") + predefined_colleges = ["LPU","MIT", "Stanford", "Harvard", "IIT", "Other"] + selected_college = st.selectbox("College/School", predefined_colleges) + if selected_college == "Other": + college = st.text_input("Enter your College/School name") + else: + college = selected_college + + category = st.selectbox("Category", ["Student", "Professional", "Other"]) + + # Submit button + if st.button("Create my account"): + if username and password and college: + # Validate password + password_error = is_valid_password(password) + if password_error: + st.error(password_error) + else: + try: + add_user(username, password, codechef_id, leetcode_id, github_id, codeforces_id, college, category,db) + st.success("Account created successfully!") + except sqlite3.IntegrityError: + st.error("This username is already registered. Please use a different username.") + else: + st.error("Username, Password, and College are required!") + + elif option == "Login": + # Input fields for login + st.subheader("Login") + username = st.text_input("Username", placeholder="Enter your username for login") + password = st.text_input("Password", placeholder="Enter your password", type="password") + + # Login button + if st.button("Login"): + if username and password: + user = authenticate_user(username, password) + if user: + st.success(f"Welcome back, {username}!") + st.write("Your Profile Information:") + st.write(f"- **CodeChef ID:** {user[3]}") + st.write(f"- **LeetCode ID:** {user[4]}") + st.write(f"- **GitHub ID:** {user[5]}") + st.write(f"- **Codeforces ID:** {user[6]}") + st.write(f"- **College/School:** {user[7]}") + st.write(f"- **Category:** {user[8]}") + else: + st.error("Invalid username or password.") + else: + st.error("Both fields are required!") + +if selected == "Dashboard": + + link="https://lottie.host/02515adf-e5f1-41c8-ab4f-8d07af1dcfb8/30KYw8Ui2q.json" + Username = "Sreecharan9484" + cUsername="Sreecharan9484" + st.session_state["Username"] = Username + st.session_state["cUsername"]= cUsername + l=load_lottieurl(link) + + col1, col2 = st.columns([1.3,9]) + + + if st.session_state["Username"] and st.session_state["cUsername"]: + response = requests.get(f'https://www.codechef.com/users/{st.session_state["cUsername"]}') + if response.status_code != 200: + print(f"Failed to retrieve the page. Status code: {response.status_code}") + else: + soup = BeautifulSoup(response.text, 'html.parser') + user_info = {} + user_name_tag = soup.find('div', class_='user-details-container').find('h1') + user_name = user_name_tag.get_text(strip=True) if user_name_tag else "N/A" + user_info['Name'] = user_name + country_tag = soup.find('span', class_='user-country-name') + country = country_tag.get_text(strip=True) if country_tag else "N/A" + user_info['Country'] = country + rating_graph_section = soup.find('section', class_='rating-graphs rating-data-section') + rating_widget = soup.find('div', class_='widget-rating') + rating_number = rating_widget.find('div', class_='rating-number') + ratingc = rating_number.text.strip() if rating_number else None + #print(ratingc) + if rating_graph_section: + contest_participated_div = rating_graph_section.find('div', class_='contest-participated-count') + if contest_participated_div: + no_of_contests = contest_participated_div.find('b').get_text(strip=True) + #print(f"No. of Contests Participated: {no_of_contests}") + #print(user_info) + else: + print("No. of Contests Participated information not found.") + data = get_leetcode_data(st.session_state["Username"]) + user_profile = data['userProfile'] + contest_info = data['userContestRanking'] + ko=[] + for stat in user_profile['submitStats']['acSubmissionNum']: + ko=ko+[stat['count']] + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Student Dashboard]👧👦", divider='rainbow') + with st.container(border=True): + + cols = st.columns([1,3,2.5,2.5]) + with cols[0]: + image = st.image(user_profile['profile']['userAvatar']) + + # Apply CSS to make the image circular + st.markdown( + """ + + """, + unsafe_allow_html=True, + ) + + # Create a link around the image + image_html = f'' + st.markdown(image_html, unsafe_allow_html=True) + with cols[1]: + z=user_info['Name'] + ui.metric_card(title="Name", content=z, description="", key="card1") + with cols[2]: + if contest_info['topPercentage']: + ui.metric_card(title="Top Percentage", content=contest_info['topPercentage'], description="", key="card2") + else: + ui.metric_card(title="Top Percentage", content=0, description="", key="card2") + with cols[3]: + ui.metric_card(title="Rating", content=user_profile['profile']['ranking'], description="", key="card3") + + + cols3=st.columns([1.5,1]) + with st.container(border=True): + with cols3[0]: + + # Data + total_questions = ko[0] + easy_questions = ko[1] + medium_questions = ko[2] + hard_questions = ko[3] + + # Calculate percentages + easy_percent = (easy_questions / total_questions) * 100 + medium_percent = (medium_questions / total_questions) * 100 + hard_percent = (hard_questions / total_questions) * 100 + + # Create columns for layout + col1, col3 = st.columns([3, 1]) + + # Display total questions + + with col1: + ui.metric_card(title="Total Question ", content=ko[0], key="card9") + + # Display pie chart + + fig, ax = plt.subplots() + ax.pie([easy_percent, medium_percent, hard_percent], + labels=["Easy", "Medium", "Hard"], + autopct="%1.1f%%", + startangle=140) + ax.axis("equal") # Equal aspect ratio for a circular pie chart + st.pyplot(fig) + + # Display difficulty counts + with col3: + ui.metric_card(title="Easy ", content=ko[1], key="card12") + ui.metric_card(title="Medium", content=ko[2], key="card10") + ui.metric_card(title="Hard ", content=ko[3], key="card11") + + with st.container(border=True): + with cols3[1]: + data1 = { + "No of contest": [contest_info['attendedContestsCount'], no_of_contests, 1], + "category": ["LeetCode", "CodeChef", "Codeforces"] + } + + # Vega-Lite specification for the bar graph + vega_spec = { + "mark": { + "type": "bar", + "cornerRadiusEnd": 4 + }, + "encoding": { + "x": { + "field": "category", + "type": "nominal", + "axis": { + "labelAngle": 0, + "title": None, # Hides the x-axis title + "grid": False # Removes the x-axis grid + } + }, + "y": { + "field": "No of contest", + "type": "quantitative", + "axis": { + "title": None # Hides the y-axis title + } + }, + "color": {"value": "#000000"}, + }, + "data": { + "values": [ + {"category": "LeetCode", "No of contest": contest_info['attendedContestsCount']}, + {"category": "Code Shef", "No of contest": no_of_contests}, + {"category": "Codeforces", "No of contest": 1} + ] + } + } + # Display the bar graph in Streamlit + with card_container(key="chart"): + st.vega_lite_chart(vega_spec, use_container_width=True) + + with st.container(border=True): + col1a, col2b= st.columns([1,1]) + with st.container(border=True): + with col1a: + with st.container(border=True): + st.write("This is resent Question You Did") + for language_data in data['matchedUser']['languageProblemCount']: + st.write(f"{language_data['languageName']}: {language_data['problemsSolved']}") + + with st.container(border=True): + with col2b: + with st.container(border=True): + header = [ "Question Name", "Timestamp"] + def format_timestamp(timestamp): + dt_object = datetime.datetime.fromtimestamp(int(timestamp)) + return dt_object.strftime("%Y-%m-%d %I:%M %p") # AM/PM format + processed_data = [] + for submission in data['recentAcSubmissionList']: + formatted_date = format_timestamp(submission['timestamp']) + processed_data.append([ submission['title'], formatted_date]) + df = pd.DataFrame(processed_data, columns=["Question Name", "Timestamp"]) + st.write(df) + + # Display table in Streamlit + + + + a, b,c = st.columns([1,4,1]) + rating = ratingc + total_contests = no_of_contests + rank = 1007 + divisio = "Starters 142" + date = date.today() + # Left column + data = { + "1704067200": 1, "1704153600": 1, "1704240000": 1, "1704326400": 1, "1704412800": 1, + "1704585600": 15, "1705190400": 1, "1705536000": 1, "1705708800": 3, "1705881600": 2, + "1705968000": 2, "1706313600": 2, "1706659200": 2, "1707264000": 1, "1707350400": 1, + "1711497600": 2, "1711929600": 6, "1712016000": 3, "1712361600": 2, "1712707200": 6, + "1712793600": 2, "1712880000": 1, "1713139200": 3, "1713225600": 3, "1713312000": 2, + "1713398400": 1, "1713571200": 1, "1716940800": 3, "1717027200": 2, "1717113600": 3, + "1717200000": 1, "1717286400": 11, "1717459200": 3, "1717718400": 4, "1718841600": 9, + "1718928000": 3, "1719100800": 1, "1719187200": 2, "1719273600": 5, "1719360000": 1, + "1719446400": 2, "1719705600": 1, "1719792000": 7, "1719878400": 6, "1719964800": 4, + "1720051200": 4, "1720137600": 1, "1720224000": 7, "1720310400": 3, "1720483200": 5, + "1720569600": 5, "1722211200": 1, "1722297600": 1, "1722384000": 1, "1690934400": 2, + "1691107200": 2, "1691193600": 3, "1694390400": 1, "1694822400": 1, "1694908800": 1, + "1696723200": 7, "1696982400": 2, "1697328000": 5, "1697414400": 1, "1702512000": 4, + "1703289600": 7, "1703721600": 3, "1703808000": 3, "1703894400": 1, "1703980800": 3 + } + + # Convert the data to a DataFrame + df = pd.DataFrame(list(data.items()), columns=['Timestamp', 'Count']) + df['Date'] = pd.to_datetime(df['Timestamp'].astype(int), unit='s') + df.set_index('Date', inplace=True) + daily_counts = df['Count'].resample('D').sum().fillna(0) + + # Create the calendar plot with a brighter colormap + cmap = 'plasma' # or 'viridis', 'inferno', etc. + fig, ax = calplot.calplot(daily_counts, cmap=cmap, figsize=(12, 6),colorbar=False) + + + # Display the plot in Streamlit + st.pyplot(fig) + with a: + st.metric(label="Rating", value=rating) + st.metric(label="Total Contests", value=total_contests) + st.metric(label="Rank", value=rank) + with b: + data = { + 'Week': ['Week 1', 'Week 2', 'Week 3', 'Week 4', 'Week 5'], + 'Rating': [3.5, 4.0, 4.5, 4.2, 4.8] + } + df = pd.DataFrame(data) + fig = go.Figure() + fig.add_trace(go.Scatter( + x=df['Week'], + y=df['Rating'], + mode='lines+markers', + name='Rating', + line=dict(color='royalblue', width=2), + marker=dict(color='royalblue', size=8) + )) + fig.update_layout( + title='Weekly Ratings', + xaxis_title='Week', + yaxis_title='Rating', + plot_bgcolor='white', + font=dict(size=14), + xaxis=dict( + showline=True, + showgrid=False, + showticklabels=True, + linecolor='black', + linewidth=2, + ticks='outside', + tickfont=dict( + family='Arial', + size=12, + color='black', + ), + ), + yaxis=dict( + showline=True, + showgrid=True, + showticklabels=True, + linecolor='black', + linewidth=2, + ticks='outside', + tickfont=dict( + family='Arial', + size=12, + color='black', + ), + ) + ) + st.plotly_chart(fig) + with c: + st.subheader("Division") + st.write(f"{divisio}") + st.subheader("Date") + st.write(date) + + # Chart (using your preferred charting library) + # ... + + st.markdown(""" +
+

No of question in each topic

+
+ """, unsafe_allow_html=True) + data = { + "Arrays": 106, + "String": 35, + "HashMap and Set": 30, + "Dynamic Programming": 28, + "Sorting": 26, + "Math": 22, + "Two Pointers": 21, + "Matrix": 16, + "Binary Search": 16, + "Trees": 14 + } + st.table(pd.DataFrame(data, index=["Count"])) + # Convert data to a Pandas DataFrame + df = pd.DataFrame.from_dict(data, orient='index', columns=['Count']) + + # Create the bar graph with custom colors + fig, ax = plt.subplots() + df.plot(kind='bar', color=['red','blue'], ax=ax) # Set color to 'skyblue' + ax.set_title('Topic Counts', color='darkblue') + ax.set_xlabel('Topic', color='gray') + ax.set_ylabel('Count', color='gray') + ax.tick_params(axis='x', rotation=45) # Rotate x-axis labels for better readability + + linkedin_embed_code = """ + + """ + linkedin_embed_code2 = """ + + """ + # Embed the LinkedIn post in the Streamlit app + with st.container(border=True): + col1, col2 = st.columns([1,1]) + with st.container(border=True): + with col1: + components.html(linkedin_embed_code, height=1200) # Adjust height as needed + with st.container(border=True): + with col2: + components.html(linkedin_embed_code2, height=1200) # Adjust height as needed + st.pyplot(fig) + + + else: + st.write("## Write Your UserName") + +if selected == "ATS Detector": + + def input_pdf_setup(uploaded_file): + if uploaded_file is not None: + ## Convert the PDF to image + images=pdf2image.convert_from_bytes(uploaded_file.read()) + first_page=images[0] + # Convert to bytes + img_byte_arr = io.BytesIO() + first_page.save(img_byte_arr, format='JPEG') + img_byte_arr = img_byte_arr.getvalue() + + pdf_parts = [ + { + "mime_type": "image/jpeg", + "data": base64.b64encode(img_byte_arr).decode() # encode to base64 + } + ] + return pdf_parts + else: + raise FileNotFoundError("No file uploaded") + lott=load_lottieurl("https://lottie.host/6a18ec99-538f-48b7-b9f1-85549bfbc5e1/n6lDQ3tHy2.json") + col1, col2,clo3= st.columns([2,5,1]) + with col2: + st.header(f"Applicant Tracking System ", divider='rainbow') + with col1: + if lott: + st_lottie(lott, key="ad", height="150px",width="150px") + else: + st.error("Failed to load Lottie animation.") + with clo3 : + pass + with st.container(border=True): + input_text=st.text_area("Job Description : ",key="input") + uploaded_file=st.file_uploader("Upload your resume (PDF)",type=["pdf"]) + if uploaded_file is not None: + st.write("PDF Uploaded Successfully") + col1, col2 ,col3,clo4= st.columns([2,2.5,2,2]) # Create two columns + with col1: + pass + with col2: + + submit1 = st.button("Tell Me About the Resume",type="primary", help="Know your resume",use_container_width=True) + with col3: + submit3 = st.button("Percentage match",type="primary", help="Percentage match",use_container_width=True) + with clo4: + pass + + #submit2 = st.button("How Can I Improvise my Skills") + + + + input_prompt1 = """ + You are an experienced Technical Human Resource Manager,your task is to review the provided resume against the job description. + Please share your professional evaluation on whether the candidate's profile aligns with the role. + Highlight the strengths and weaknesses of the applicant in relation to the specified job requirements. + """ + + input_prompt3 = """ + You are an skilled ATS (Applicant Tracking System) scanner with a deep understanding of data science and ATS functionality, + your task is to evaluate the resume against the provided job description. give me the percentage of match if the resume matches + the job description. First the output should come as percentage and then keywords missing and last final thoughts. + """ + + if submit1: + if uploaded_file is not None: + pdf_content=input_pdf_setup(uploaded_file) + response=get_gemini_response1(input_prompt1,pdf_content,input_text) + st.subheader("The Repsonse is") + st.write(response) + else: + st.write("Please uplaod the resume") + + elif submit3: + if uploaded_file is not None: + pdf_content=input_pdf_setup(uploaded_file) + response=get_gemini_response1(input_prompt3,pdf_content,input_text) + st.subheader("The Repsonse is") + st.write(response) + else: + st.write("Please uplaod the resume") + +if selected == "LinkedIn Profile": + + def extract_text_from_pdf(file): + pdf_reader = PyPDF2.PdfReader(file) + text = "" + for page in pdf_reader.pages: + text += page.extract_text() + "\n" + return text + + link="https://lottie.host/a2aa0932-646a-40a0-9638-4634d3a77c89/MU89CSP8h1.json" + l=load_lottieurl(link) + col1, col2 = st.columns([1.3,9]) # Create two columns + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Linkdin Profile Builder]👧👦", divider='rainbow') + with st.container(border=True): + col1, col2 = st.columns(2) + with col1: + # PDF upload + uploaded_image = st.file_uploader("Upload an image file", type=["png", "jpg", "jpeg"]) + if uploaded_image is not None: + with st.container(border=True): + st.image(uploaded_image, caption="Uploaded Image", use_container_width=True) + uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) + if uploaded_file is not None: + text2 = extract_text_from_pdf(uploaded_file) + # Job role selection + job_roles = [ + "Software Engineer", + "Data Scientist", + "Product Manager", + "Designer", + "Front-end Developer", + "Back-end Developer", + "Full-stack Developer", + "Mobile App Developer", + "DevOps Engineer", + "Quality Assurance Engineer", + "Data Analyst", + "Business Intelligence Analyst", + "Machine Learning Engineer", + "Data Engineer", + "Product Owner", + "Product Marketing Manager", + "Project Manager", + "Scrum Master", + "UX Researcher", + "IT Project Manager", + "Machnical Engineer", + ] + # selected_role = st.selectbox("Select your job role", job_roles) + selected_role = st.text_input("Which topic you want to learn",placeholder="Enter the topic") + # Display selected job role + with col2: + # Video upload + st.video(r"Recording 2024-08-03 001234.mp4") + + with st.container(border=True): + st.markdown(":grey[Click the button to analyze the image]") + know = st.button("ANALYZE", + type="primary", help="Analyze the LinkedIn proflie",use_container_width=True) + if know: + + st.caption("Powerd by Gemini Pro Vision") + img_=uploaded_image + img = PIL.Image.open(img_) + def get_analysis(prompt, image): + import google.generativeai as genai + genai.configure(api_key=api_key) + + # Set up the model + generation_config = { + "temperature": 0.9, + "top_p": 0.95, + "top_k": 40, + "max_output_tokens": 5000, + } + + safety_settings = [ + { + "category": "HARM_CATEGORY_HARASSMENT", + "threshold": "BLOCK_MEDIUM_AND_ABOVE" + }, + { + "category": "HARM_CATEGORY_HATE_SPEECH", + "threshold": "BLOCK_MEDIUM_AND_ABOVE" + }, + { + "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", + "threshold": "BLOCK_MEDIUM_AND_ABOVE" + }, + { + "category": "HARM_CATEGORY_DANGEROUS_CONTENT", + "threshold": "BLOCK_MEDIUM_AND_ABOVE" + } + ] + + model = genai.GenerativeModel(model_name="gemini-1.5-flash", + generation_config=generation_config, + safety_settings=safety_settings) + + response = model.generate_content([prompt, image]) + + return response.text + role = """ + You are a highly skilled AI trained to review LinikedIn profile photos and provide feedback on their quality. You are a professional and your feedback should be constructive and helpful. + """ + instructions = """ + You are provided with an image file depicting a LinkedIn profile photo. + + Your job is to proved a structured report analyzing the image based on the following criteria: + + 1. Resolution and Clarity: + + Describe the resolution and clarity of the image. Tell the user whether the image is blurry or pixelated, making it difficult to discern the features. If the image is not clear, suggest the user to upload a higher-resolution photo. + (provide a confidence score for this assessment.) + + 2. Professional Appearance: + + Analyse the image and describe the attire of the person in the image. Tell what he/she is wearing. If the attire is appropriate for a professional setting, tell the user that their attire is appropriate for a professional setting. If the attire is not appropriate for a professional setting, tell the user that their attire might not be suitable for a professional setting. If the attire is not appropriate for a professional setting, suggest the user to wear more formal clothing for their profile picture. Also include background in this assessment. Describe the background of the person. If the background is simple and uncluttered, tell the user about it, that it is allowing the focus to remain on them. If the background is not good, tell the user about it. If the background is not suitable, suggest the user to use a plain background or crop the image to remove distractions. + (provide a confidence score for this assessment.) + + 3. Face Visibility: + + Analyse the image and describe the visibility of the person's face. If the face is clearly visible and unobstructed, tell the user that their face is clearly visible and unobstructed. If the face is partially covered by any objects or hair, making it difficult to see the face clearly, tell the user about it. Also tell where the person is looking. If the person is looking away, suggest the user to look into the camera for a more direct connection. + (provide a confidence score for this assessment.) + + 4. Appropriate Expression: + + Describe the expression of the person in the image. If the expression is friendly and approachable, tell the user about it. If the expression is overly serious, stern, or unprofessional, tell the user user about it. If the expression is not appropriate, suggest the user to consider a more relaxed and natural smile for a more approachable look. + (provide a confidence score for this assessment.) + + 5. Filters and Distortions: + + Describe the filters and distortions applied to the image. If the image appears natural and unaltered, tell the user about it. If the image appears to be excessively filtered, edited, or retouched, tell the user about it. If the image is excessively filtered, edited, or retouched, suggest the user to opt for a natural-looking photo for a more genuine impression. + (provide a confidence score for this assessment.) + + 6. Single Person and No Pets: + + Describe the number of people and pets in the image. If the image contains only the user, tell the user about it. If the image contains multiple people or pets, tell the user about it. If the image contains multiple people or pets, suggest the user to crop the image to remove distractions. + (provide a confidence score for this assessment.) + + Final review: + + At the end give a final review on whether the image is suitable for a LinkedIn profile photo. Also the reason for your review. + """ + output_format = """ + Your report should be structured like shown in triple backticks below: + + ``` + **1. Resolution and Clarity:**\n[description] (confidence: [confidence score]%) + + **2. Professional Appearance:**\n[description] (confidence: [confidence score]%) + + **3. Face Visibility:**\n[description] (confidence: [confidence score]%) + + **4. Appropriate Expression:**\n[description] (confidence: [confidence score]%) + + **5. Filters and Distortions:**\n[description] (confidence: [confidence score]%) + + **6. Single Person and No Pets:**\n[description] (confidence: [confidence score]%) + + **Final review:**\n[your review] + ``` + + You should also provide a confidence score for each assessment, ranging from 0 to 100. + + Don't copy the above text. Write your own report. + + And always keep your output in this format. + + For example: + + **1. Resolution and Clarity:**\n[Your description and analysis.] (confidence: [score here]%) + + **2. Professional Appearance:**\n[Your description and analysis.] (confidence: [socre here]%) + + **3. Face Visibility:**\n[Your description and analysis.] (confidence: [score her]%) + + **4. Appropriate Expression:**\n[Your description and analysis.] (confidence: [score here]%) + + **5. Filters and Distortions:**\n[Your description and analysis.] (confidence: [score here]%) + + **6. Single Person and No Pets:**\n[Your description and analysis.] (confidence: [score here]%) + + **Final review:**\n[Your review] + + """ + prompt = role + instructions + output_format + image_parts = [ + { + "mime_type": "image/jpeg", + "data": img + } + ] + + with st.container(border=True): + st.markdown(":grey[Click the button to analyze the image]") + + + # show spinner while generating + with st.spinner("Analyzing..."): + + try: + # get the analysis + analysis = get_analysis(prompt, img) + except Exception as e: + st.error(f"An error occurred: {e}") + + else: + + # find all the headings that are enclosed in ** ** + headings = re.findall(r"\*\*(.*?)\*\*", analysis) + + # find all the features that are after ** and before (confidence + features = re.findall(r"\*\*.*?\*\*\n(.*?)\s\(", analysis) + + # find all the confidence scores that are after (confidence: and before %) + confidence_scores = re.findall(r"\(confidence: (.*?)\%\)", analysis) + + # find the final review which is after the last confidence score like this: + # (confidence: 50%)\n\n(.*?) + + st.subheader(":blue[LinkedIn] Profile Photo Analyzer", divider="gray") + for i in range(6): + + st.divider() + + st.markdown(f"**{headings[i]}**\n\n{features[i]}") + + # show progress bar + st.progress(int(confidence_scores[i]), text=f"confidence score: {confidence_scores[i]}") + + st.divider() + st.divider() + st.divider() + text2 = extract_text_from_pdf(uploaded_file) + st.subheader(":blue[LinkedIn] Skills Analyzer", divider="gray") + s=f"""Take on the role of a skilled HR professional. Analyze the provided candidate text ({text2}) and compare the candidate's skills to the required skills for the specified job profile ({selected_role}). Identify the top 5 most relevant skills required for the job and determine the candidate's skill gap.Calculate a percentage match based on the overlap between the candidate's skills and the required skills. + """+"""Output the results in the following format: + 1. skils Methoned By user: + 2. Top Skills Required: {skill1}, {skill2}, {skill3}, {skill4}, {skill5} + 3. Candidate's Skill Gap: {missing_skills} + 4 .Role Match Percentage: {percentage} + tell we what you think about the skills of the useres + """ + + st.write(get_gemini_response(s)) + + st.divider() + st.divider() + st.divider() + st.subheader(":blue[LinkedIn] Certificates Analyzer", divider="gray") + s=f"""Take on the role of a skilled HR professional. Analyze the provided candidate text ({text2}) and compare the candidate's Certifications to the required Certifications for the specified job profile ({selected_role}). Identify the top 5 most relevant skills required for the job and determine the candidate's skill gap.Calculate a percentage match based on the overlap between the candidate's skills and the required skills. + """+"""Output the results in the following format: + 1. Certifications Methoned By user: + 2. Top Certifications Required: {skill1}, {skill2}, {skill3}, {skill4}, {skill5} + 3. Candidate's Certifications Gap: {missing_skills} + 4 .Role Match Percentage: {percentage} + tell we what you think about the Certifications of the useres + """ + st.write(get_gemini_response(s)) + + st.divider() + st.divider() + st.divider() + st.subheader(":blue[LinkedIn] Headline Analyzer", divider="gray") + s=f"""Take on the role of a skilled HR professional. Analyze the provided candidate text ({text2}) and compare the candidate's Headline to the required Headline for the specified job profile ({selected_role}). Identify the top 5 most relevant skills required for the job and determine the candidate's skill gap.Calculate a percentage match based on the overlap between the candidate's skills and the required skills. + """+"""Output the results in the following format: + 1. Headline Methoned By user: + 2. Suugest some more text by annalysis: {Headline1}, {Headline2}, {Headline3}, {Headline4}, {Headline5} + 3. Candidate's Headline Gap (missing words): {missing_words} + 4 .Role Match Percentage: {percentage} + tell we what you think about the Headline of the useres + """ + st.write(get_gemini_response(s)) + st.divider() + st.divider() + st.divider() + st.subheader(":blue[LinkedIn] Summary Analyzer", divider="gray") + s=f"""Take on the role of a skilled HR professional. Analyze the provided candidate text ({text2}) and compare the candidate's Summary to the required Summary for the specified job profile ({selected_role}). Identify the top 5 most relevant skills required for the job and determine the candidate's skill gap.Calculate a percentage match based on the overlap between the candidate's skills and the required skills. + """+"""Output the results in the following format: + 1. Summary Methoned By user: + + 2. Candidate's Summary Gap: {missing_skills} + 3 .Role rating you give: {percentage} + tell we what you think about the Summary of the useres + """ + st.write(get_gemini_response(s)) + + + st.divider() + st.divider() + st.divider() + st.subheader(":blue[LinkedIn] Education Analyzer", divider="gray") + s=f"""Take on the role of a skilled HR professional. Analyze the provided candidate text ({text2}) and compare the candidate's Education to the required Education for the specified job profile ({selected_role}). Identify the top 5 most relevant skills required for the job and determine the candidate's skill gap.Calculate a percentage match based on the overlap between the candidate's skills and the required skills. + """+"""Output the results in the following format: + 1. Education Methoned By user: + + 2. Candidate's Education Gap: {missing_skills} + 3 .Role rating you give: {percentage} + tell we what you think about the Education of the useres + """ + st.write(get_gemini_response(s)) + st.divider() + st.divider() + st.divider() + + with st.container(border=True): + pass + +if selected=="1vs1": + link="https://lottie.host/02515adf-e5f1-41c8-ab4f-8d07af1dcfb8/30KYw8Ui2q.json" + l=load_lottieurl(link) + col1, col2 = st.columns([1.3,9]) + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header(f":rainbow[Compare with your friend]👧👦", divider='rainbow') + + ans=listofuser(db) + left,right=st.columns(2) + your_id,friends_id="","" + with left: + your_id = st.multiselect("What is your ?", ans, [], placeholder="Select Your's Id") + with right: + friends_id = st.multiselect("What is your friend's?", ans, [], placeholder="Select Your Friend's Id") + + if your_id and friends_id: + + your_id = list_profiles(your_id[0],db) + friends_id = list_profiles(friends_id[0],db) + + your_data = get_leetcode_data1(your_id[5]) + friend_data = get_leetcode_data1(friends_id[5]) + your_RQuestion=RQuestion(your_id[5], limit=50) + friend_RQuestion=RQuestion(friends_id[5], limit=50) + your_let_Badges=let_Badges(your_id[5]) + friend_let_Badges=let_Badges(friends_id[5]) + your_skils=skills(your_id[5]) + friend_skils=skills(friends_id[5]) + your_graph=graph(your_id[5]) + friend_graph=graph(friends_id[5]) + my_df = process_data(your_skils) + friends_df = process_data(friend_skils) + link="https://lottie.host/3de1b5f0-49df-47f6-8a9b-21d9830c1810/IxEWj5DLSb.json" + + l=load_lottieurl(link) + col1, col2 = st.columns([1.3,9]) + with col1: + st.lottie(l, height=100, width=100) + with col2: + st.header("Coding Platform analyzer 💻💻", divider=True) + your, midle, friend = st.columns([1.6,0.1, 1.6]) + with your: + user_profile = your_data['userProfile'] + contest_info = your_data['userContestRanking'] + ko=[] + for stat in user_profile['submitStats']['acSubmissionNum']: + ko=ko+[stat['count']] + cols = st.columns([1,2.9]) + with cols[0]: + image = st.image(user_profile['profile']['userAvatar']) + st.markdown( + """ + + """, + unsafe_allow_html=True, + ) + + # Create a link around the image + image_html = f'' + st.markdown(image_html, unsafe_allow_html=True) + with cols[1]: + z=your_data['userProfile']['username'] + ui.metric_card(title="User Name", content=z, description="", key="card1") + perc,ratong = st.columns([1,1]) + with perc: + ui.metric_card(title="Top Percentage", content=contest_info['topPercentage'], description="Great🥰", key="card2") + with ratong: + ui.metric_card(title="Rating", content=user_profile['profile']['ranking'], description="Good😁", key="card3") + st.header("Easy-Medium-Hard😊😑😥", divider=True) + total_questions = ko[0] + easy_questions = ko[1] + medium_questions = ko[2] + hard_questions = ko[3] + # Calculate percentages + easy_percent = (easy_questions / total_questions) * 100 + medium_percent = (medium_questions / total_questions) * 100 + hard_percent = (hard_questions / total_questions) * 100 + # Display total questions + col1, col3 = st.columns([3, 1]) + with col1: + ui.metric_card(title="Total Question ", content=ko[0], key="card9") + + # Display pie chart + + fig, ax = plt.subplots() + ax.pie([easy_percent, medium_percent, hard_percent], + labels=["Easy", "Medium", "Hard"], + autopct="%1.1f%%", + startangle=140) + ax.axis("equal") # Equal aspect ratio for a circular pie chart + st.pyplot(fig) + + # Display difficulty counts + with col3: + ui.metric_card(title="Easy ", content=ko[1], key="card12") + ui.metric_card(title="Medium", content=ko[2], key="card10") + ui.metric_card(title="Hard ", content=ko[3], key="card11") + + st.header("SkillTracker🤹‍♂️🦾", divider=True) + categories = list(my_df["Category"].unique()) + selected_categories = st.multiselect("Select Categories for Your Data", categories, default=categories, key="my_categories") + + # Filter and Sort Data + filtered_my_df = my_df[my_df["Category"].isin(selected_categories)] + sorted_my_df = filtered_my_df.sort_values(by="Problems Solved", ascending=False) + + # Bar Chart + + fig, ax = plt.subplots(figsize=(6, 4)) + for category in sorted_my_df["Category"].unique(): + category_data = sorted_my_df[sorted_my_df["Category"] == category] + ax.bar(category_data["Topic"], category_data["Problems Solved"], label=category) + + ax.set_ylabel("Problems Solved") + ax.set_xlabel("Topic") + ax.set_title("Your Problems Solved (Sorted)") + ax.legend() + plt.xticks(rotation=90, ha="right") + st.pyplot(fig) + # Detailed Data + st.subheader("Detailed Data View") + st.dataframe(sorted_my_df) + language_data = your_data['matchedUser']['languageProblemCount'] + language_df = pd.DataFrame(language_data) + language_df.columns = ["Language", "Problems Solved"] + st.header("Questions per Language🤠", divider=True) + st.table(language_df) + header = [ "Question Name", "Timestamp"] + def format_timestamp(timestamp): + dt_object = datetime.datetime.fromtimestamp(int(timestamp)) + return dt_object.strftime("%Y-%m-%d %I:%M %p") # AM/PM format + processed_data = [] + for submission in your_RQuestion: + formatted_date = format_timestamp(submission['timestamp']) + processed_data.append([ submission['title'], formatted_date]) + df = pd.DataFrame(processed_data, columns=["Question Name", "Timestamp"]) + st.header("Your Recent Question😊📕📅",divider=True) + st.write(df) + st.header("Badges 💫🌟",divider=True) + total_badges = len(your_let_Badges["matchedUser"]["badges"]) + with st.expander(f"Total Badges: {total_badges}"): + # Create three columns + col1, col2, col3 = st.columns(3) + + # Iterate over badges and distribute them to columns + for i, badge in enumerate(your_let_Badges["matchedUser"]["badges"]): + if i % 3 == 0: + with col1: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + elif i % 3 == 1: + with col2: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + else: + with col3: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + st.header("Graph 📊📈📉",divider=True) + data=your_graph['matchedUser']['userCalendar']['submissionCalendar'] + data = json.loads(data) + df = pd.DataFrame(list(data.items()), columns=['Timestamp', 'Count']) + df['Date'] = pd.to_datetime(df['Timestamp'].astype(int), unit='s') + df.set_index('Date', inplace=True) + daily_counts = df['Count'].resample('D').sum().fillna(0) + cmap = 'plasma' + fig, ax = calplot.calplot(daily_counts, cmap=cmap, figsize=(12, 6),colorbar=False) + st.pyplot(fig) + with midle: + st.markdown(""" + + +
+ """, unsafe_allow_html=True) + + with friend: + user_profile = friend_data['userProfile'] + contest_info = friend_data['userContestRanking'] + ko=[] + for stat in user_profile['submitStats']['acSubmissionNum']: + ko=ko+[stat['count']] + cols = st.columns([1,2.9]) + with cols[0]: + image = st.image(user_profile['profile']['userAvatar']) + st.markdown( + """ + + """, + unsafe_allow_html=True, + ) + + # Create a link around the image + image_html = f'' + st.markdown(image_html, unsafe_allow_html=True) + with cols[1]: + z=friend_data['userProfile']['username'] + ui.metric_card(title="User Name", content=z, description="", key="card24") + perc,ratong = st.columns([1,1]) + with perc: + ui.metric_card(title="Top Percentage", content=contest_info['topPercentage'], description="Great🥰", key="card26") + with ratong: + ui.metric_card(title="Rating", content=user_profile['profile']['ranking'], description="Good😁", key="card36") + st.header("Easy-Medium-Hard😊😑😥", divider=True) + total_questions = ko[0] + easy_questions = ko[1] + medium_questions = ko[2] + hard_questions = ko[3] + easy_percent = (easy_questions / total_questions) * 100 + medium_percent = (medium_questions / total_questions) * 100 + hard_percent = (hard_questions / total_questions) * 100 + col1, col3 = st.columns([3, 1]) + with col1: + ui.metric_card(title="Total Question ", content=ko[0], key="card94") + fig, ax = plt.subplots() + ax.pie([easy_percent, medium_percent, hard_percent], + labels=["Easy", "Medium", "Hard"], + autopct="%1.1f%%", + startangle=140) + ax.axis("equal") # Equal aspect ratio for a circular pie chart + st.pyplot(fig) + + # Display difficulty counts + with col3: + ui.metric_card(title="Easy ", content=ko[1], key="card124") + ui.metric_card(title="Medium", content=ko[2], key="card104") + ui.metric_card(title="Hard ", content=ko[3], key="card114") + + st.header("SkillTracker🤹‍♂️🦾", divider=True) + + categories = list(friends_df["Category"].unique()) + selected_categories = st.multiselect("Select Categories for Friends' Data", categories, default=categories, key="friends_categories") + + # Filter and Sort Data + filtered_friends_df = friends_df[friends_df["Category"].isin(selected_categories)] + sorted_friends_df = filtered_friends_df.sort_values(by="Problems Solved", ascending=False) + + # Bar Chart + + fig, ax = plt.subplots(figsize=(6, 4)) + for category in sorted_friends_df["Category"].unique(): + category_data = sorted_friends_df[sorted_friends_df["Category"] == category] + ax.bar(category_data["Topic"], category_data["Problems Solved"], label=category) + + ax.set_ylabel("Problems Solved") + ax.set_xlabel("Topic") + ax.set_title("Friends' Problems Solved (Sorted)") + ax.legend() + plt.xticks(rotation=90, ha="right") + st.pyplot(fig) + + # Detailed Data + st.subheader("Detailed Data View") + st.dataframe(sorted_friends_df) + + + + + language_data = friend_data['matchedUser']['languageProblemCount'] + language_df = pd.DataFrame(language_data) + language_df.columns = ["Language", "Problems Solved"] + st.header("Questions per Language🤠", divider=True) + st.table(language_df) + + header = [ "Question Name", "Timestamp"] + def format_timestamp(timestamp): + dt_object = datetime.datetime.fromtimestamp(int(timestamp)) + return dt_object.strftime("%Y-%m-%d %I:%M %p") # AM/PM format + processed_data = [] + + + for submission in friend_RQuestion: + formatted_date = format_timestamp(submission['timestamp']) + processed_data.append([ submission['title'], formatted_date]) + df = pd.DataFrame(processed_data, columns=["Question Name", "Timestamp"]) + + st.header("Your Recent Question😊📕📅",divider=True) + st.write(df) + total_badges = len(friend_let_Badges["matchedUser"]["badges"]) + + # Create the expander + + st.header("Badges 💫🌟",divider=True) + with st.expander(f"Total Badges: {total_badges}"): + # Create three columns + col1, col2, col3 = st.columns(3) + + # Iterate over badges and distribute them to columns + for i, badge in enumerate(friend_let_Badges["matchedUser"]["badges"]): + if i % 3 == 0: + with col1: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + elif i % 3 == 1: + with col2: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + else: + with col3: + st.write(f"**{badge['displayName']}**") + st.image(badge['medal']['config']["iconGif"], width=100) + + st.header("Graph 📊📈📉",divider=True) + data=friend_graph['matchedUser']['userCalendar']['submissionCalendar'] + data= json.loads(data) + df = pd.DataFrame(list(data.items()), columns=['Timestamp', 'Count']) + + df['Date'] = pd.to_datetime(df['Timestamp'].astype(int), unit='s') + df.set_index('Date', inplace=True) + daily_counts1 = df['Count'].resample('D').sum().fillna(0) + cmap = 'plasma' + fig3, ax = calplot.calplot(daily_counts1, cmap=cmap, figsize=(12, 6),colorbar=False) + st.pyplot(fig3) + codeforce_your=your_id[2] + codeforce_friend=friends_id[2] + codechef_username_your=your_id[1] + codechef_username_friend=friends_id[1] + + + + with your: + + st.header("Codeforces and Codechef ",divider=True) + data=get_user_data(codeforce_your) + # last_online_time = datetime.utcfromtimestamp(data["lastOnlineTimeSeconds"]).strftime('%Y-%m-%d %H:%M:%S') + # registration_time = datetime.utcfromtimestamp(data["registrationTimeSeconds"]).strftime('%Y-%m-%d %H:%M:%S') + st.image(data["avatar"], caption="User's Avatar", width=100) + st.subheader(f"Username: {data['handle']}") + + # Display Rating and Rank + st.write(f"**Rank:** {data['rank']}") + st.write(f"**Max Rank:** {data['maxRank']}") + st.write(f"**Rating:** {data['rating']}") + st.write(f"**Max Rating:** {data['maxRating']}") + + # Display Friend Count and Contribution + st.write(f"**Friend Count:** {data['friendOfCount']}") + st.write(f"**Contribution:** {data['contribution']}") + + + with midle: + st.markdown(""" + + +
+ """, unsafe_allow_html=True) + + with friend: + st.header("Codeforces and Codechef ",divider=True) + + data=get_user_data(codeforce_friend) + # last_online_time = datetime.utcfromtimestamp(data["lastOnlineTimeSeconds"]).strftime('%Y-%m-%d %H:%M:%S') + # registration_time = datetime.utcfromtimestamp(data["registrationTimeSeconds"]).strftime('%Y-%m-%d %H:%M:%S') + st.image(data["avatar"], caption="User's Avatar", width=100) + st.subheader(f"Username: {data['handle']}") + + # Display Rating and Rank + st.write(f"**Rank:** {data['rank']}") + st.write(f"**Max Rank:** {data['maxRank']}") + st.write(f"**Rating:** {data['rating']}") + st.write(f"**Max Rating:** {data['maxRating']}") + + # Display Friend Count and Contribution + st.write(f"**Friend Count:** {data['friendOfCount']}") + st.write(f"**Contribution:** {data['contribution']}") + +if selected=="collage": + ans=listofcollege(db) + your_id = st.multiselect("which Collage ?", ans, [], placeholder="Select Your's Id") + + if your_id: + usernames=totalusers(your_id[0],4) + user_ratings = get_ratings_for_users(usernames) + st.write(user_ratings) + for user, rating in user_ratings.items(): + if rating is not None: + st.write(f"{user}'s contest rating: {rating}") + else: + st.write(f"Could not retrieve contest rating for {user}") + active_days_list = get_active_days_for_users(usernames) + + if active_days_list: + for username, days in active_days_list: + st.write(f"{username}: {days} active days in 2024") + else: + st.write("Error fetching active days for some users.") + + diff --git a/profiles/profile_data.sql b/profiles/profile_data.sql new file mode 100644 index 0000000..147f7f9 --- /dev/null +++ b/profiles/profile_data.sql @@ -0,0 +1,17 @@ +use profiles; +CREATE TABLE user_profiles ( + id INT AUTO_INCREMENT PRIMARY KEY, + name VARCHAR(255) NOT NULL, + leetcode_username VARCHAR(255), + codechef_username VARCHAR(255), + github_username VARCHAR(255), + codeforces_username VARCHAR(255) +); +-- Insert new rows into the user_profiles table +INSERT INTO user_profiles (name, leetcode_username, codechef_username, github_username, codeforces_username) +VALUES +('Sree Charan', 'sreecharna9484', 'sreecharna9484', 'SreeCharan1234', 'sreecharna9484'), +('ykgupta2411', 'ykgupta2411', 'ykgupta2411', 'ykgupta2411', 'ykgupta2411'); + +-- Query the data to verify +SELECT * FROM user_profiles; diff --git a/progress.csv b/progress.csv new file mode 100644 index 0000000..26f9814 --- /dev/null +++ b/progress.csv @@ -0,0 +1 @@ +User,Repo,Lines of Code,Language diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..385a741 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,45 @@ +firebase-admin +google-cloud-firestore +SpeechRecognition +google-generativeai +python-dotenv +streamlit +streamlit-ace +streamlit-extras +pdf2image +gtts +pillow +google.generativeai +IPython +streamlit-lottie +requests +youtube-transcript-api +streamlit-option-menu +streamlit-webrtc +pandas +plotly +Pillow +GitPython +beautifulsoup4 +matplotlib +seaborn +spacy +streamlit_shadcn_ui +langchain +PyPDF2 +faiss-cpu +poppler-utils +requests_html +streamlit-on-Hover-tabs +httpx-oauth +firebase-admin +streamlit-authenticator +calplot +langchain_google_genai +langchain-community +numpy +aiortc +flask +flask-socketio +streamlit_chat +mysql-connector-python diff --git a/src/ATS.json b/src/ATS.json new file mode 100644 index 0000000..3598fb9 --- /dev/null +++ b/src/ATS.json @@ -0,0 +1,5289 @@ +{ + "v": "5.12.1", + "fr": 60, + "ip": 0, + "op": 360, + "w": 500, + "h": 500, + "nm": "Person Creative", + "ddd": 0, + "assets": [ + { + "id": "comp_0", + "nm": "Tabs&Mouse", + "fr": 60, + "layers": [ + { + "ddd": 0, + "ind": 1, + "ty": 4, + "nm": "Mouse", + "sr": 1, + "ks": { + "o": { + "a": 0, + "k": 100, + "ix": 11 + }, + "r": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 0, + "s": [ + 82 + ] + }, + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 70, + "s": [ + -35 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 133, + "s": [ + -35 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 184, + "s": [ + -215 + ] + }, + { + "t": 254, + "s": [ + -215 + ] + } + ], + "ix": 10 + }, + "p": { + "a": 1, + "k": [ + { + "i": { + "x": 0.227, + "y": 1 + }, + "o": { + "x": 0.904, + "y": 0 + }, + "t": 0, + "s": [ + 378.418, + 309.751, + 0 + ], + "to": [ + 99.25, + -2.25, + 0 + ], + "ti": [ + 30.5, + 32.5, + 0 + ] + }, + { + "i": { + "x": 0.667, + "y": 1 + }, + "o": { + "x": 0.167, + "y": 0 + }, + "t": 70, + "s": [ + 445.418, + 210.251, + 0 + ], + "to": [ + -0.062, + 0.25, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "i": { + "x": 0.227, + "y": 1 + }, + "o": { + "x": 0.904, + "y": 0 + }, + "t": 133, + "s": [ + 445.418, + 210.251, + 0 + ], + "to": [ + -35.583, + -31.25, + 0 + ], + "ti": [ + -69.846, + -86.912, + 0 + ] + }, + { + "i": { + "x": 0.227, + "y": 1 + }, + "o": { + "x": 0.167, + "y": 0 + }, + "t": 184, + "s": [ + 417.918, + 322.751, + 0 + ], + "to": [ + 0.417, + 0.167, + 0 + ], + "ti": [ + 0.154, + 0.588, + 0 + ] + }, + { + "i": { + "x": 0.334, + "y": 1 + }, + "o": { + "x": 0.167, + "y": 0 + }, + "t": 254, + "s": [ + 417.918, + 322.751, + 0 + ], + "to": [ + -0.114, + -0.434, + 0 + ], + "ti": [ + -0.333, + -0.25, + 0 + ] + }, + { + "t": 296, + "s": [ + 447.918, + 360.251, + 0 + ] + } + ], + "ix": 2, + "l": 2 + }, + "a": { + "a": 0, + "k": [ + -0.082, + -18.249, + 0 + ], + "ix": 1, + "l": 2 + }, + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.667, + 0.667, + 0.667 + ], + "y": [ + 1, + 1, + 1 + ] + }, + "o": { + "x": [ + 0.333, + 0.333, + 0.333 + ], + "y": [ + 0, + 0, + 0 + ] + }, + "t": 70, + "s": [ + 100, + 100, + 100 + ] + }, + { + "i": { + "x": [ + 0.667, + 0.667, + 0.667 + ], + "y": [ + 1, + 1, + 1 + ] + }, + "o": { + "x": [ + 0.333, + 0.333, + 0.333 + ], + "y": [ + 0, + 0, + 0 + ] + }, + "t": 84, + "s": [ + 60, + 60, + 100 + ] + }, + { + "i": { + "x": [ + 0.667, + 0.667, + 0.667 + ], + "y": [ + 1, + 1, + 1 + ] + }, + "o": { + "x": [ + 0.333, + 0.333, + 0.333 + ], + "y": [ + 0, + 0, + 0 + ] + }, + "t": 99, + "s": [ + 100, + 100, + 100 + ] + }, + { + "i": { + "x": [ + 0.667, + 0.667, + 0.667 + ], + "y": [ + 1, + 1, + 1 + ] + }, + "o": { + "x": [ + 0.333, + 0.333, + 0.333 + ], + "y": [ + 0, + 0, + 0 + ] + }, + "t": 184, + "s": [ + 100, + 100, + 100 + ] + }, + { + "i": { + "x": [ + 0.667, + 0.667, + 0.667 + ], + "y": [ + 1, + 1, + 1 + ] + }, + "o": { + "x": [ + 0.333, + 0.333, + 0.333 + ], + "y": [ + 0, + 0, + 0 + ] + }, + "t": 198, + "s": [ + 60, + 60, + 100 + ] + }, + { + "t": 213, + "s": [ + 100, + 100, + 100 + ] + } + ], + "ix": 6, + "l": 2 + } + }, + "ao": 0, + "shapes": [ + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 9.701, + 7.316 + ], + [ + -0.082, + 4.316 + ], + [ + -9.864, + 7.316 + ], + [ + -0.082, + -18.249 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.334 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.743 + ], + "y": [ + 0 + ] + }, + "t": 0, + "s": [ + 50 + ] + }, + { + "i": { + "x": [ + 0.334 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 45, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 254, + "s": [ + 100 + ] + }, + { + "t": 296, + "s": [ + 50 + ] + } + ], + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.334 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.743 + ], + "y": [ + 0 + ] + }, + "t": 0, + "s": [ + 50 + ] + }, + { + "i": { + "x": [ + 0.334 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 45, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 254, + "s": [ + 0 + ] + }, + { + "t": 296, + "s": [ + 50 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": -311, + "ix": 3 + }, + "m": 1, + "ix": 2, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 1, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 0.976470588235, + 0.341176470588, + 0.219607843137, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 1", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + } + ], + "ip": 0, + "op": 367, + "st": 0, + "ct": 1, + "bm": 0 + }, + { + "ddd": 0, + "ind": 2, + "ty": 4, + "nm": "Isolation Mode 2", + "sr": 1, + "ks": { + "o": { + "a": 0, + "k": 100, + "ix": 11 + }, + "r": { + "a": 0, + "k": 0, + "ix": 10 + }, + "p": { + "a": 1, + "k": [ + { + "i": { + "x": 0.227, + "y": 1 + }, + "o": { + "x": 0.904, + "y": 0 + }, + "t": 190, + "s": [ + 302, + 300, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "i": { + "x": 0.227, + "y": 0.227 + }, + "o": { + "x": 0.167, + "y": 0.167 + }, + "t": 278, + "s": [ + 400, + 300, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "i": { + "x": 0.667, + "y": 1 + }, + "o": { + "x": 0.167, + "y": 0 + }, + "t": 323, + "s": [ + 400, + 300, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "t": 359, + "s": [ + 302, + 300, + 0 + ] + } + ], + "ix": 2, + "l": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0, + 0 + ], + "ix": 1, + "l": 2 + }, + "s": { + "a": 0, + "k": [ + 100, + 100, + 100 + ], + "ix": 6, + "l": 2 + } + }, + "ao": 0, + "shapes": [ + { + "ty": "gr", + "it": [ + { + "ty": "gr", + "it": [ + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -47.614 + ], + [ + 175.598, + -47.614 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 249, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 278, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 100 + ] + }, + { + "t": 339, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 1", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -65.809 + ], + [ + 175.598, + -65.809 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 238, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 274, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 100 + ] + }, + { + "t": 344, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 2", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -84.005 + ], + [ + 175.598, + -84.005 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 227, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 270, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 100 + ] + }, + { + "t": 349, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 3", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 3, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -102.201 + ], + [ + 175.598, + -102.201 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 216, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 266, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 100 + ] + }, + { + "t": 353, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 4", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 4, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Lines", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ], + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ], + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ] + ], + "v": [ + [ + 30.033, + -43.798 + ], + [ + -1.663, + -43.798 + ], + [ + -16.924, + -59.059 + ], + [ + -16.924, + -90.755 + ], + [ + -1.663, + -106.016 + ], + [ + 30.033, + -106.016 + ], + [ + 45.293, + -90.755 + ], + [ + 45.293, + -59.059 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 190, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 278, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 0 + ] + }, + { + "t": 356, + "s": [ + 100 + ] + } + ], + "ix": 1 + }, + "e": { + "a": 0, + "k": 100, + "ix": 2 + }, + "o": { + "a": 0, + "k": -90, + "ix": 3 + }, + "m": 1, + "ix": 2, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 1, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ], + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ], + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ] + ], + "v": [ + [ + 30.033, + -43.798 + ], + [ + -1.663, + -43.798 + ], + [ + -16.924, + -59.059 + ], + [ + -16.924, + -90.755 + ], + [ + -1.663, + -106.016 + ], + [ + 30.033, + -106.016 + ], + [ + 45.293, + -90.755 + ], + [ + 45.293, + -59.059 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 0, + "k": 100, + "ix": 2 + }, + "o": { + "a": 0, + "k": -90, + "ix": 3 + }, + "m": 1, + "ix": 2, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.333 + ], + "y": [ + 0 + ] + }, + "t": 198, + "s": [ + 1, + 1, + 1, + 1 + ] + }, + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 215, + "s": [ + 0.599108040333, + 0.599108040333, + 0.937254905701, + 1 + ] + }, + { + "i": { + "x": [ + 0.426 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.781 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 0.599108040333, + 0.599108040333, + 0.937254905701, + 1 + ] + }, + { + "t": 359, + "s": [ + 1, + 1, + 1, + 1 + ] + } + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 13, + -76 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 13, + -76 + ], + "ix": 1 + }, + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.326, + 0.326 + ], + "y": [ + 1, + 1 + ] + }, + "o": { + "x": [ + 0.822, + 0.822 + ], + "y": [ + 0, + 0 + ] + }, + "t": 191, + "s": [ + 50, + 50 + ] + }, + { + "t": 218, + "s": [ + 100, + 100 + ] + } + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.326 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.822 + ], + "y": [ + 0 + ] + }, + "t": 191, + "s": [ + 0 + ] + }, + { + "t": 205, + "s": [ + 100 + ] + } + ], + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box 2", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 3, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 145.25, + 144 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box_Content", + "np": 3, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 4.538, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 4.538 + ], + [ + 0, + 0 + ], + [ + -4.538, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -4.538 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -4.538, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -4.538 + ], + [ + 0, + 0 + ], + [ + 4.538, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 4.538 + ] + ], + "v": [ + [ + 334.516, + 121.87 + ], + [ + 114.995, + 121.87 + ], + [ + 106.777, + 113.653 + ], + [ + 106.777, + 24.435 + ], + [ + 114.995, + 16.218 + ], + [ + 334.516, + 16.218 + ], + [ + 342.734, + 24.435 + ], + [ + 342.734, + 113.653 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 1, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 2", + "np": 3, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + } + ], + "ip": 0, + "op": 367, + "st": 0, + "ct": 1, + "bm": 0 + }, + { + "ddd": 0, + "ind": 3, + "ty": 4, + "nm": "Isolation Mode 3", + "sr": 1, + "ks": { + "o": { + "a": 0, + "k": 100, + "ix": 11 + }, + "r": { + "a": 0, + "k": 0, + "ix": 10 + }, + "p": { + "a": 0, + "k": [ + 400, + 300, + 0 + ], + "ix": 2, + "l": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0, + 0 + ], + "ix": 1, + "l": 2 + }, + "s": { + "a": 0, + "k": [ + 100, + 100, + 100 + ], + "ix": 6, + "l": 2 + } + }, + "ao": 0, + "shapes": [ + { + "ty": "gr", + "it": [ + { + "ty": "gr", + "it": [ + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -47.614 + ], + [ + 175.598, + -47.614 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 136, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 165, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 100 + ] + }, + { + "t": 359, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 1", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -65.809 + ], + [ + 175.598, + -65.809 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 125, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 161, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 327, + "s": [ + 100 + ] + }, + { + "t": 359, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 2", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -84.005 + ], + [ + 175.598, + -84.005 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 114, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 157, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 331, + "s": [ + 100 + ] + }, + { + "t": 359, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 3", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 3, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + 0, + 0 + ] + ], + "v": [ + [ + 79.924, + -102.201 + ], + [ + 175.598, + -102.201 + ] + ], + "c": false + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 2, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 103, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 153, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 335, + "s": [ + 100 + ] + }, + { + "t": 359, + "s": [ + 0 + ] + } + ], + "ix": 2 + }, + "o": { + "a": 0, + "k": 0, + "ix": 3 + }, + "m": 1, + "ix": 4, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Group 4", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 4, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Lines", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ], + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ], + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ] + ], + "v": [ + [ + 30.033, + -43.798 + ], + [ + -1.663, + -43.798 + ], + [ + -16.924, + -59.059 + ], + [ + -16.924, + -90.755 + ], + [ + -1.663, + -106.016 + ], + [ + 30.033, + -106.016 + ], + [ + 45.293, + -90.755 + ], + [ + 45.293, + -59.059 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.904 + ], + "y": [ + 0 + ] + }, + "t": 77, + "s": [ + 100 + ] + }, + { + "i": { + "x": [ + 0.227 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 168, + "s": [ + 0 + ] + }, + { + "i": { + "x": [ + 0.833 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.167 + ], + "y": [ + 0 + ] + }, + "t": 339, + "s": [ + 0 + ] + }, + { + "t": 359, + "s": [ + 100 + ] + } + ], + "ix": 1 + }, + "e": { + "a": 0, + "k": 100, + "ix": 2 + }, + "o": { + "a": 0, + "k": -90, + "ix": 3 + }, + "m": 1, + "ix": 2, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 1, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 13, + -75 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 13, + -75 + ], + "ix": 1 + }, + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.355, + 0.355 + ], + "y": [ + 1, + 1 + ] + }, + "o": { + "x": [ + 0.959, + 0.959 + ], + "y": [ + 0, + 0 + ] + }, + "t": 141, + "s": [ + 100, + 100 + ] + }, + { + "i": { + "x": [ + 0, + 0 + ], + "y": [ + 1, + 1 + ] + }, + "o": { + "x": [ + 0.612, + 0.612 + ], + "y": [ + 0, + 0 + ] + }, + "t": 155.295, + "s": [ + 93, + 93 + ] + }, + { + "t": 168, + "s": [ + 100, + 100 + ] + } + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ], + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -8.428 + ], + [ + 0, + 0 + ], + [ + 8.428, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 8.428 + ] + ], + "v": [ + [ + 30.033, + -43.798 + ], + [ + -1.663, + -43.798 + ], + [ + -16.924, + -59.059 + ], + [ + -16.924, + -90.755 + ], + [ + -1.663, + -106.016 + ], + [ + 30.033, + -106.016 + ], + [ + 45.293, + -90.755 + ], + [ + 45.293, + -59.059 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "tm", + "s": { + "a": 0, + "k": 0, + "ix": 1 + }, + "e": { + "a": 0, + "k": 100, + "ix": 2 + }, + "o": { + "a": 0, + "k": -90, + "ix": 3 + }, + "m": 1, + "ix": 2, + "nm": "Trim Paths 1", + "mn": "ADBE Vector Filter - Trim", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.333 + ], + "y": [ + 0 + ] + }, + "t": 148, + "s": [ + 1, + 1, + 1, + 1 + ] + }, + { + "i": { + "x": [ + 0.667 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.333 + ], + "y": [ + 0 + ] + }, + "t": 165, + "s": [ + 0.599108040333, + 0.599108040333, + 0.937254905701, + 1 + ] + }, + { + "i": { + "x": [ + 0.426 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.781 + ], + "y": [ + 0 + ] + }, + "t": 323, + "s": [ + 0.599108040333, + 0.599108040333, + 0.937254905701, + 1 + ] + }, + { + "t": 359, + "s": [ + 1, + 1, + 1, + 1 + ] + } + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 13, + -76 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 13, + -76 + ], + "ix": 1 + }, + "s": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.326, + 0.326 + ], + "y": [ + 1, + 1 + ] + }, + "o": { + "x": [ + 0.822, + 0.822 + ], + "y": [ + 0, + 0 + ] + }, + "t": 141, + "s": [ + 50, + 50 + ] + }, + { + "t": 168, + "s": [ + 100, + 100 + ] + } + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 1, + "k": [ + { + "i": { + "x": [ + 0.326 + ], + "y": [ + 1 + ] + }, + "o": { + "x": [ + 0.822 + ], + "y": [ + 0 + ] + }, + "t": 141, + "s": [ + 0 + ] + }, + { + "t": 155, + "s": [ + 100 + ] + } + ], + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box 2", + "np": 4, + "cix": 2, + "bm": 0, + "ix": 3, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Box_Content", + "np": 3, + "cix": 2, + "bm": 0, + "ix": 1, + "mn": "ADBE Vector Group", + "hd": false + }, + { + "ty": "gr", + "it": [ + { + "ind": 0, + "ty": "sh", + "ix": 1, + "ks": { + "a": 0, + "k": { + "i": [ + [ + 5.511, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 5.511 + ], + [ + 0, + 0 + ], + [ + -5.511, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -5.511 + ], + [ + 0, + 0 + ] + ], + "o": [ + [ + 0, + 0 + ], + [ + -5.511, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + -5.511 + ], + [ + 0, + 0 + ], + [ + 5.511, + 0 + ], + [ + 0, + 0 + ], + [ + 0, + 5.511 + ] + ], + "v": [ + [ + 203.185, + 76.088 + ], + [ + -43.337, + 76.088 + ], + [ + -53.315, + 66.109 + ], + [ + -53.315, + -125.239 + ], + [ + -43.337, + -135.217 + ], + [ + 203.185, + -135.217 + ], + [ + 213.163, + -125.239 + ], + [ + 213.163, + 66.109 + ] + ], + "c": true + }, + "ix": 2 + }, + "nm": "Path 1", + "mn": "ADBE Vector Shape - Group", + "hd": false + }, + { + "ty": "st", + "c": { + "a": 0, + "k": [ + 0, + 0, + 0, + 1 + ], + "ix": 3 + }, + "o": { + "a": 0, + "k": 100, + "ix": 4 + }, + "w": { + "a": 0, + "k": 1, + "ix": 5 + }, + "lc": 1, + "lj": 1, + "ml": 10, + "bm": 0, + "nm": "Stroke 1", + "mn": "ADBE Vector Graphic - Stroke", + "hd": false + }, + { + "ty": "fl", + "c": { + "a": 0, + "k": [ + 1, + 1, + 1, + 1 + ], + "ix": 4 + }, + "o": { + "a": 0, + "k": 100, + "ix": 5 + }, + "r": 1, + "bm": 0, + "nm": "Fill 1", + "mn": "ADBE Vector Graphic - Fill", + "hd": false + }, + { + "ty": "tr", + "p": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 2 + }, + "a": { + "a": 0, + "k": [ + 0, + 0 + ], + "ix": 1 + }, + "s": { + "a": 0, + "k": [ + 100, + 100 + ], + "ix": 3 + }, + "r": { + "a": 0, + "k": 0, + "ix": 6 + }, + "o": { + "a": 0, + "k": 100, + "ix": 7 + }, + "sk": { + "a": 0, + "k": 0, + "ix": 4 + }, + "sa": { + "a": 0, + "k": 0, + "ix": 5 + }, + "nm": "Transform" + } + ], + "nm": "Tab", + "np": 3, + "cix": 2, + "bm": 0, + "ix": 2, + "mn": "ADBE Vector Group", + "hd": false + } + ], + "ip": 0, + "op": 367, + "st": 0, + "ct": 1, + "bm": 0 + } + ] + } + ], + "layers": [ + { + "ddd": 0, + "ind": 1, + "ty": 0, + "nm": "Tabs&Mouse", + "refId": "comp_0", + "sr": 1, + "ks": { + "o": { + "a": 0, + "k": 100, + "ix": 11 + }, + "r": { + "a": 0, + "k": 0, + "ix": 10 + }, + "p": { + "a": 1, + "k": [ + { + "i": { + "x": 0.227, + "y": 1 + }, + "o": { + "x": 0.904, + "y": 0 + }, + "t": 189, + "s": [ + 156, + 270, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "i": { + "x": 0.227, + "y": 0.227 + }, + "o": { + "x": 0.167, + "y": 0.167 + }, + "t": 278, + "s": [ + 108, + 270, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "i": { + "x": 0.667, + "y": 1 + }, + "o": { + "x": 0.167, + "y": 0 + }, + "t": 323, + "s": [ + 108, + 270, + 0 + ], + "to": [ + 0, + 0, + 0 + ], + "ti": [ + 0, + 0, + 0 + ] + }, + { + "t": 359, + "s": [ + 156, + 270, + 0 + ] + } + ], + "ix": 2, + "l": 2 + }, + "a": { + "a": 0, + "k": [ + 400, + 300, + 0 + ], + "ix": 1, + "l": 2 + }, + "s": { + "a": 0, + "k": [ + 100, + 100, + 100 + ], + "ix": 6, + "l": 2 + } + }, + "ao": 0, + "w": 800, + "h": 600, + "ip": 0, + "op": 360, + "st": 0, + "ct": 1, + "bm": 0 + } + ], + "markers": [], + "props": {} + } \ No newline at end of file diff --git a/src/Home_student.json b/src/Home_student.json new file mode 100644 index 0000000..d26e685 --- /dev/null +++ b/src/Home_student.json @@ -0,0 +1 @@ +{"v":"5.6.2","fr":25,"ip":0,"op":123,"w":800,"h":700,"nm":"pesar site","ddd":0,"assets":[{"id":"image_0","w":1980,"h":2100,"u":"","p":"","e":1}],"layers":[{"ddd":0,"ind":1,"ty":4,"nm":"Shape Layer 5","td":1,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[400,350,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.25,0],[0,0],[0,0],[-6,-3.5],[7,10.5]],"o":[[-1.25,0],[0,0],[0,0],[-2,-37],[-7,-10.5]],"v":[[167.75,-184.75],[150.25,-131.5],[170.75,-71],[254.041,-81.21],[215.25,-151.5]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.160784298766,0.733425364775,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":4271,"st":0,"bm":0},{"ddd":0,"ind":2,"ty":4,"nm":"play Outlines","tt":2,"sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[722.5,279,0],"to":[0,-84.223,0],"ti":[165.738,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,127,0],"to":[-117.262,3.5,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[84.861,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"t":122,"s":[404,432,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[55,55,100]},{"t":122,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.111,-1.407],[0,0],[0,2.58],[0,0],[-2.581,-1.643],[0,0]],"o":[[0,0],[-2.581,1.643],[0,0],[-0.234,-2.579],[0,0],[2.111,1.173]],"v":[[17.592,2.697],[-6.098,17.943],[-11.963,15.363],[-11.963,-15.13],[-6.098,-17.708],[17.592,-2.464]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[10.321,10.555],[10.321,-10.556],[-11.494,-9.381],[-11.494,9.383]],"o":[[-10.32,-10.556],[-10.321,10.555],[11.258,9.383],[11.494,-9.381]],"v":[[29.32,-29.436],[-29.32,-29.436],[-29.32,30.609],[29.32,30.609]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.956862804936,0.882353001015,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,74.854],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":5,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[78.47,77.788],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.615,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.615,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.407843137255,0.188235294118,0.458823529412,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":42,"st":0,"bm":0},{"ddd":0,"ind":3,"ty":4,"nm":"Shape Layer 4","td":1,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[400,350,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[19,3],[0,0],[-1,-1],[0,0],[7.75,19.25],[21.618,13.085]],"o":[[-19,-3],[0,0],[1,1],[0,0],[-7.785,-19.338],[-19,-11.5]],"v":[[141.25,-193.75],[148.25,-143.5],[206.25,-58],[255.25,-81],[248,-102.75],[192,-171.25]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.160784298766,0.733425364775,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":4271,"st":0,"bm":0},{"ddd":0,"ind":4,"ty":4,"nm":"note Outlines","tt":2,"sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[77,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[723.5,279,0],"to":[0,-84.223,0],"ti":[167.738,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[404,127,0],"to":[-148.762,3.5,0],"ti":[0,-84.223,0]},{"t":122,"s":[77,279,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[80,80,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[55,55,100]},{"t":122,"s":[80,80,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.888,0],[0,0],[0,1.888],[-1.888,0],[0,0],[0,-1.888]],"o":[[0,0],[-1.888,0],[0,-1.888],[0,0],[1.888,0],[0,1.888]],"v":[[18.816,6.842],[-15.395,6.842],[-18.816,3.421],[-15.395,0],[18.816,0],[22.237,3.421]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[1.888,0],[0,0],[0,1.889],[-1.888,0],[0,0],[0,-1.888]],"o":[[0,0],[-1.888,0],[0,-1.888],[0,0],[1.888,0],[0,1.889]],"v":[[18.816,20.526],[-15.395,20.526],[-18.816,17.105],[-15.395,13.684],[18.816,13.684],[22.237,17.105]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[0,-1.889],[1.888,0],[0,0],[0,1.888],[-1.888,0],[0,0]],"o":[[0,1.888],[0,0],[-1.888,0],[0,-1.889],[0,0],[1.888,0]],"v":[[5.132,-10.263],[1.711,-6.842],[-15.395,-6.842],[-18.816,-10.263],[-15.395,-13.684],[1.711,-13.684]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ind":3,"ty":"sh","ix":4,"ks":{"a":0,"k":{"i":[[5.19,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,-5.19],[0,0],[-5.19,0],[0,0],[0,5.189],[0,0]],"o":[[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[-5.19,0],[0,0],[0,5.189],[0,0],[5.19,0],[0,0],[0,-5.19]],"v":[[23.092,-33.355],[19.671,-33.355],[19.671,-37.632],[16.25,-41.053],[12.829,-37.632],[12.829,-33.355],[3.421,-33.355],[3.421,-37.632],[0,-41.053],[-3.421,-37.632],[-3.421,-33.355],[-12.829,-33.355],[-12.829,-37.632],[-16.25,-41.053],[-19.671,-37.632],[-19.671,-33.355],[-23.092,-33.355],[-32.5,-23.947],[-32.5,31.645],[-23.092,41.053],[23.092,41.053],[32.5,31.645],[32.5,-23.947]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,1,0.933333393172,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,73.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":7,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.172549024224,0.258823543787,0.149019613862,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":69,"st":0,"bm":0},{"ddd":0,"ind":5,"ty":4,"nm":"lampjolo Outlines 3","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[703.25,279,0],"to":[0,-84.223,0],"ti":[173.238,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[404,127,0],"to":[-124.262,-1,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[88.25,278.675,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"t":122,"s":[703.25,279,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[80,80,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[1,-1],[-1,-1],[0,0],[-0.641,0],[-0.491,0.49],[1,1]],"o":[[-1,-1],[-1,1],[0,0],[0.491,0.49],[0.642,0],[1,-1],[0,0]],"v":[[24.792,19.358],[21.188,19.358],[21.188,22.962],[27.509,29.283],[29.301,30.018],[31.094,29.283],[31.094,25.679]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-0.642,0],[-0.491,0.49],[1,1],[0,0],[1,-1],[-1,-1]],"o":[[0.491,0.49],[0.641,0],[1,-1],[0,0],[-1,-1],[-1,1],[0,0]],"v":[[-24.793,-23.057],[-23,-22.32],[-21.208,-23.057],[-21.208,-26.661],[-27.529,-32.982],[-31.133,-32.982],[-31.133,-29.378]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[-0.661,0],[-0.491,0.49],[0,0],[1,1],[1,-1],[0,0],[-1,-1]],"o":[[0.641,0],[0,0],[1,-1],[-1,-1],[0,0],[-1,1],[0.51,0.49]],"v":[[23,-22.302],[24.792,-23.038],[31.113,-29.359],[31.113,-32.963],[27.509,-32.963],[21.188,-26.642],[21.188,-23.038]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ind":3,"ty":"sh","ix":4,"ks":{"a":0,"k":{"i":[[0.981,-1],[0,0],[-1,-1],[-0.642,0],[-0.49,0.49],[0,0],[1,1]],"o":[[0,0],[-1,1],[0.491,0.49],[0.641,0],[0,0],[1,-1],[-0.981,-1]],"v":[[-24.793,19.358],[-31.114,25.679],[-31.114,29.283],[-29.321,30.018],[-27.529,29.283],[-21.208,22.962],[-21.208,19.358]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ind":4,"ty":"sh","ix":5,"ks":{"a":0,"k":{"i":[[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0],[0,1.416]],"o":[[0,0],[-1.396,0],[0,1.397],[0,0],[1.397,0],[0,-1.396]],"v":[[41.452,-4.396],[32.528,-4.396],[29.981,-1.849],[32.528,0.698],[41.452,0.698],[44,-1.849]],"c":true},"ix":2},"nm":"Path 5","mn":"ADBE Vector Shape - Group","hd":false},{"ind":5,"ty":"sh","ix":6,"ks":{"a":0,"k":{"i":[[0,1.416],[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0]],"o":[[0,-1.396],[0,0],[-1.397,0],[0,1.397],[0,0],[1.415,0]],"v":[[-29.982,-1.849],[-32.529,-4.396],[-41.453,-4.396],[-44,-1.849],[-41.453,0.698],[-32.529,0.698]],"c":true},"ix":2},"nm":"Path 6","mn":"ADBE Vector Shape - Group","hd":false},{"ind":6,"ty":"sh","ix":7,"ks":{"a":0,"k":{"i":[[-1.397,0],[0,1.415],[0,0],[1.415,0],[0,-1.415],[0,0]],"o":[[1.396,0],[0,0],[0,-1.397],[-1.416,0],[0,0],[0,1.415]],"v":[[0,-31.831],[2.547,-34.378],[2.547,-43.302],[0,-45.849],[-2.548,-43.302],[-2.548,-34.378]],"c":true},"ix":2},"nm":"Path 7","mn":"ADBE Vector Shape - Group","hd":false},{"ind":7,"ty":"sh","ix":8,"ks":{"a":0,"k":{"i":[[0,1.415],[1.415,0],[0,-9],[-1.415,0],[0,1.415],[-6.17,0]],"o":[[0,-1.396],[-8.982,0],[0,1.396],[1.396,0],[0,-6.189],[1.415,0]],"v":[[2.547,-15.51],[0,-18.057],[-16.302,-1.755],[-13.755,0.792],[-11.208,-1.755],[0,-12.963]],"c":true},"ix":2},"nm":"Path 8","mn":"ADBE Vector Shape - Group","hd":false},{"ind":8,"ty":"sh","ix":9,"ks":{"a":0,"k":{"i":[[0,-12.528],[3.924,-4.057],[0.641,-4.208],[1.849,0],[0,0],[0.265,1.811],[2.982,3.075],[0.056,5.981],[-12.566,0.095]],"o":[[0,6.095],[-2.981,3.094],[-0.283,1.811],[0,0],[-1.831,0],[-0.66,-4.208],[-3.849,-4],[-0.132,-12.566],[12.547,-0.094]],"v":[[22.584,-1.831],[16.245,13.849],[10.698,25.094],[7,28.245],[-7.019,28.245],[-10.699,25.113],[-16.284,13.83],[-22.585,-1.585],[-0.151,-24.416]],"c":true},"ix":2},"nm":"Path 9","mn":"ADBE Vector Shape - Group","hd":false},{"ind":9,"ty":"sh","ix":10,"ks":{"a":0,"k":{"i":[[0,-1.434],[0,0],[2.037,-0.302],[0,0],[1.377,0],[0,0],[0.358,1.321],[0,0],[0,2.151],[0,0],[-1.434,0],[0,0]],"o":[[0,0],[0,2.132],[0,0],[-0.358,1.321],[0,0],[-1.377,0],[0,0],[-2.056,-0.32],[0,0],[0,-1.434],[0,0],[1.434,0.019]],"v":[[10.452,34.283],[10.452,36.962],[6.849,41.169],[6.188,43.603],[3.264,45.849],[-3.284,45.849],[-6.208,43.603],[-6.85,41.169],[-10.472,36.943],[-10.472,34.264],[-7.887,31.679],[7.867,31.679]],"c":true},"ix":2},"nm":"Path 10","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.972549079446,0.913725550034,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75.001,72.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":12,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.615,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.615,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.96862745285,0.647058844566,0.176470592618,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":61,"op":359,"st":0,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"Shape Layer 3","td":1,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[400,350,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[55.743,38.957]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[-44,-30.75]],"v":[[110.5,-199.25],[129,-136.25],[155.25,-82.5],[220.5,-55.5],[233,-52.5],[254.5,-84],[192,-170.5]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.160784298766,0.733425364775,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":4271,"st":0,"bm":0},{"ddd":0,"ind":7,"ty":4,"nm":"lampjolo Outlines","tt":2,"sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[703.25,279,0],"to":[0,-84.223,0],"ti":[173.238,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[404,127,0],"to":[-124.262,-1,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[88.25,278.675,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"t":122,"s":[703.25,279,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[80,80,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[1,-1],[-1,-1],[0,0],[-0.641,0],[-0.491,0.49],[1,1]],"o":[[-1,-1],[-1,1],[0,0],[0.491,0.49],[0.642,0],[1,-1],[0,0]],"v":[[24.792,19.358],[21.188,19.358],[21.188,22.962],[27.509,29.283],[29.301,30.018],[31.094,29.283],[31.094,25.679]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-0.642,0],[-0.491,0.49],[1,1],[0,0],[1,-1],[-1,-1]],"o":[[0.491,0.49],[0.641,0],[1,-1],[0,0],[-1,-1],[-1,1],[0,0]],"v":[[-24.793,-23.057],[-23,-22.32],[-21.208,-23.057],[-21.208,-26.661],[-27.529,-32.982],[-31.133,-32.982],[-31.133,-29.378]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[-0.661,0],[-0.491,0.49],[0,0],[1,1],[1,-1],[0,0],[-1,-1]],"o":[[0.641,0],[0,0],[1,-1],[-1,-1],[0,0],[-1,1],[0.51,0.49]],"v":[[23,-22.302],[24.792,-23.038],[31.113,-29.359],[31.113,-32.963],[27.509,-32.963],[21.188,-26.642],[21.188,-23.038]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ind":3,"ty":"sh","ix":4,"ks":{"a":0,"k":{"i":[[0.981,-1],[0,0],[-1,-1],[-0.642,0],[-0.49,0.49],[0,0],[1,1]],"o":[[0,0],[-1,1],[0.491,0.49],[0.641,0],[0,0],[1,-1],[-0.981,-1]],"v":[[-24.793,19.358],[-31.114,25.679],[-31.114,29.283],[-29.321,30.018],[-27.529,29.283],[-21.208,22.962],[-21.208,19.358]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ind":4,"ty":"sh","ix":5,"ks":{"a":0,"k":{"i":[[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0],[0,1.416]],"o":[[0,0],[-1.396,0],[0,1.397],[0,0],[1.397,0],[0,-1.396]],"v":[[41.452,-4.396],[32.528,-4.396],[29.981,-1.849],[32.528,0.698],[41.452,0.698],[44,-1.849]],"c":true},"ix":2},"nm":"Path 5","mn":"ADBE Vector Shape - Group","hd":false},{"ind":5,"ty":"sh","ix":6,"ks":{"a":0,"k":{"i":[[0,1.416],[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0]],"o":[[0,-1.396],[0,0],[-1.397,0],[0,1.397],[0,0],[1.415,0]],"v":[[-29.982,-1.849],[-32.529,-4.396],[-41.453,-4.396],[-44,-1.849],[-41.453,0.698],[-32.529,0.698]],"c":true},"ix":2},"nm":"Path 6","mn":"ADBE Vector Shape - Group","hd":false},{"ind":6,"ty":"sh","ix":7,"ks":{"a":0,"k":{"i":[[-1.397,0],[0,1.415],[0,0],[1.415,0],[0,-1.415],[0,0]],"o":[[1.396,0],[0,0],[0,-1.397],[-1.416,0],[0,0],[0,1.415]],"v":[[0,-31.831],[2.547,-34.378],[2.547,-43.302],[0,-45.849],[-2.548,-43.302],[-2.548,-34.378]],"c":true},"ix":2},"nm":"Path 7","mn":"ADBE Vector Shape - Group","hd":false},{"ind":7,"ty":"sh","ix":8,"ks":{"a":0,"k":{"i":[[0,1.415],[1.415,0],[0,-9],[-1.415,0],[0,1.415],[-6.17,0]],"o":[[0,-1.396],[-8.982,0],[0,1.396],[1.396,0],[0,-6.189],[1.415,0]],"v":[[2.547,-15.51],[0,-18.057],[-16.302,-1.755],[-13.755,0.792],[-11.208,-1.755],[0,-12.963]],"c":true},"ix":2},"nm":"Path 8","mn":"ADBE Vector Shape - Group","hd":false},{"ind":8,"ty":"sh","ix":9,"ks":{"a":0,"k":{"i":[[0,-12.528],[3.924,-4.057],[0.641,-4.208],[1.849,0],[0,0],[0.265,1.811],[2.982,3.075],[0.056,5.981],[-12.566,0.095]],"o":[[0,6.095],[-2.981,3.094],[-0.283,1.811],[0,0],[-1.831,0],[-0.66,-4.208],[-3.849,-4],[-0.132,-12.566],[12.547,-0.094]],"v":[[22.584,-1.831],[16.245,13.849],[10.698,25.094],[7,28.245],[-7.019,28.245],[-10.699,25.113],[-16.284,13.83],[-22.585,-1.585],[-0.151,-24.416]],"c":true},"ix":2},"nm":"Path 9","mn":"ADBE Vector Shape - Group","hd":false},{"ind":9,"ty":"sh","ix":10,"ks":{"a":0,"k":{"i":[[0,-1.434],[0,0],[2.037,-0.302],[0,0],[1.377,0],[0,0],[0.358,1.321],[0,0],[0,2.151],[0,0],[-1.434,0],[0,0]],"o":[[0,0],[0,2.132],[0,0],[-0.358,1.321],[0,0],[-1.377,0],[0,0],[-2.056,-0.32],[0,0],[0,-1.434],[0,0],[1.434,0.019]],"v":[[10.452,34.283],[10.452,36.962],[6.849,41.169],[6.188,43.603],[3.264,45.849],[-3.284,45.849],[-6.208,43.603],[-6.85,41.169],[-10.472,36.943],[-10.472,34.264],[-7.887,31.679],[7.867,31.679]],"c":true},"ix":2},"nm":"Path 10","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.972549079446,0.913725550034,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75.001,72.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":12,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.615,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.615,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.96862745285,0.647058844566,0.176470592618,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":17,"st":0,"bm":0},{"ddd":0,"ind":8,"ty":4,"nm":"play ","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[722.5,279,0],"to":[0,-84.223,0],"ti":[165.738,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,127,0],"to":[-117.262,3.5,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[84.861,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"t":122,"s":[404,432,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[55,55,100]},{"t":122,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.111,-1.407],[0,0],[0,2.58],[0,0],[-2.581,-1.643],[0,0]],"o":[[0,0],[-2.581,1.643],[0,0],[-0.234,-2.579],[0,0],[2.111,1.173]],"v":[[17.592,2.697],[-6.098,17.943],[-11.963,15.363],[-11.963,-15.13],[-6.098,-17.708],[17.592,-2.464]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[10.321,10.555],[10.321,-10.556],[-11.494,-9.381],[-11.494,9.383]],"o":[[-10.32,-10.556],[-10.321,10.555],[11.258,9.383],[11.494,-9.381]],"v":[[29.32,-29.436],[-29.32,-29.436],[-29.32,30.609],[29.32,30.609]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.956862804936,0.882353001015,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,74.854],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":5,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[78.47,77.788],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.615,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.615,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.407843137255,0.188235294118,0.458823529412,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":3,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":92,"op":261,"st":0,"bm":0},{"ddd":0,"ind":9,"ty":4,"nm":"Shape Layer 6","td":1,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[400,350,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[-9.75,1.25],[12.25,17.25]],"o":[[0,0],[0,0],[0,0],[-2,-18.75],[-12.25,-17.25]],"v":[[189,-173.5],[167.5,-153],[192,-67.25],[254.874,-77.794],[226.25,-138.75]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.160784298766,0.733425364775,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":79,"op":4271,"st":0,"bm":0},{"ddd":0,"ind":10,"ty":4,"nm":"champion Outlines 2","tt":2,"sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,127,0],"to":[-166.238,0,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[87.887,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[726.797,279,0],"to":[0,-84.223,0],"ti":[166.238,0,0]},{"t":122,"s":[404,127,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[80,80,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[100,100,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-0.019,1.478],[0,0],[0,0],[0,-2.582],[0,0],[5.802,-1.145]],"o":[[0,0],[0,0],[2.582,0],[0,0],[-0.007,6.131],[0.297,-1.393]],"v":[[21.667,-11.667],[21.667,-29.555],[26.71,-29.555],[31.391,-24.873],[31.391,-19.756],[21.184,-7.353]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-2.595,0],[0,0],[0,0],[-0.297,-1.394],[0.008,6.128]],"o":[[0,-2.594],[0,0],[0,0],[0.019,1.478],[-5.803,-1.146],[0,0]],"v":[[-31.393,-24.85],[-26.687,-29.555],[-21.666,-29.555],[-21.666,-11.667],[-21.184,-7.353],[-31.393,-19.754]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[5.166,0],[0,0],[0,0],[0.921,0],[0,0],[0,-0.92],[0,0],[0,0],[0,-5.179],[0,0],[-10.214,-0.053],[-5.905,-1.472],[3.198,-3.291],[0,0],[0,-3.797],[-0.92,0],[0,0],[0,0.921],[4.576,4.707],[0,0],[0.216,4.188],[-2.926,5.164],[-0.012,10.224],[0,0]],"o":[[0,0],[0,0],[0,-0.92],[0,0],[-0.92,0],[0,0],[0,0],[-5.18,0],[0,0],[0.011,10.222],[2.926,5.164],[-0.214,4.188],[0,0],[-4.577,4.71],[0,0.921],[0,0],[0.92,0],[0.001,-3.797],[0,0],[-3.195,-3.286],[5.905,-1.472],[10.213,-0.053],[0,0],[0,-5.167]],"v":[[27.989,-35.521],[21.667,-35.521],[21.667,-38.334],[19.999,-40],[-20.001,-40],[-21.666,-38.334],[-21.666,-35.521],[-27.964,-35.521],[-37.357,-26.128],[-37.357,-19.752],[-18.826,-1.147],[-5.04,9.349],[-9.527,25.503],[-10.424,26.423],[-18.333,38.333],[-16.667,40],[16.667,40],[18.333,38.333],[10.424,26.426],[9.527,25.506],[5.04,9.349],[18.826,-1.147],[37.357,-19.754],[37.357,-26.151]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":5,"mn":"ADBE Vector Group","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.862745157878,0.933333393172,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,76.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":7,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[77.823,79.288],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.196078434587,0.270588248968,0.376470595598,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":30,"op":102,"st":0,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Artboard 1@3x.png","cl":"png","refId":"image_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[400,350,0],"ix":2},"a":{"a":0,"k":[990,1050,0],"ix":1},"s":{"a":0,"k":[33.5,33.5,100],"ix":6}},"ao":0,"ip":0,"op":4271,"st":0,"bm":0},{"ddd":0,"ind":12,"ty":4,"nm":"champion Outlines","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,127,0],"to":[-166.238,0,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[87.887,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[726.797,279,0],"to":[0,-84.223,0],"ti":[166.238,0,0]},{"t":122,"s":[404,127,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[80,80,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[100,100,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-0.019,1.478],[0,0],[0,0],[0,-2.582],[0,0],[5.802,-1.145]],"o":[[0,0],[0,0],[2.582,0],[0,0],[-0.007,6.131],[0.297,-1.393]],"v":[[21.667,-11.667],[21.667,-29.555],[26.71,-29.555],[31.391,-24.873],[31.391,-19.756],[21.184,-7.353]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-2.595,0],[0,0],[0,0],[-0.297,-1.394],[0.008,6.128]],"o":[[0,-2.594],[0,0],[0,0],[0.019,1.478],[-5.803,-1.146],[0,0]],"v":[[-31.393,-24.85],[-26.687,-29.555],[-21.666,-29.555],[-21.666,-11.667],[-21.184,-7.353],[-31.393,-19.754]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[5.166,0],[0,0],[0,0],[0.921,0],[0,0],[0,-0.92],[0,0],[0,0],[0,-5.179],[0,0],[-10.214,-0.053],[-5.905,-1.472],[3.198,-3.291],[0,0],[0,-3.797],[-0.92,0],[0,0],[0,0.921],[4.576,4.707],[0,0],[0.216,4.188],[-2.926,5.164],[-0.012,10.224],[0,0]],"o":[[0,0],[0,0],[0,-0.92],[0,0],[-0.92,0],[0,0],[0,0],[-5.18,0],[0,0],[0.011,10.222],[2.926,5.164],[-0.214,4.188],[0,0],[-4.577,4.71],[0,0.921],[0,0],[0.92,0],[0.001,-3.797],[0,0],[-3.195,-3.286],[5.905,-1.472],[10.213,-0.053],[0,0],[0,-5.167]],"v":[[27.989,-35.521],[21.667,-35.521],[21.667,-38.334],[19.999,-40],[-20.001,-40],[-21.666,-38.334],[-21.666,-35.521],[-27.964,-35.521],[-37.357,-26.128],[-37.357,-19.752],[-18.826,-1.147],[-5.04,9.349],[-9.527,25.503],[-10.424,26.423],[-18.333,38.333],[-16.667,40],[16.667,40],[18.333,38.333],[10.424,26.426],[9.527,25.506],[5.04,9.349],[18.826,-1.147],[37.357,-19.754],[37.357,-26.151]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":5,"mn":"ADBE Vector Group","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.862745157878,0.933333393172,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,76.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":7,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[77.823,79.288],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.196078434587,0.270588248968,0.376470595598,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":30,"st":0,"bm":0},{"ddd":0,"ind":13,"ty":4,"nm":"play ","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[722.5,279,0],"to":[0,-84.223,0],"ti":[165.738,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,127,0],"to":[-117.262,3.5,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[84.861,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"t":122,"s":[404,432,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[55,55,100]},{"t":122,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.111,-1.407],[0,0],[0,2.58],[0,0],[-2.581,-1.643],[0,0]],"o":[[0,0],[-2.581,1.643],[0,0],[-0.234,-2.579],[0,0],[2.111,1.173]],"v":[[17.592,2.697],[-6.098,17.943],[-11.963,15.363],[-11.963,-15.13],[-6.098,-17.708],[17.592,-2.464]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[10.321,10.555],[10.321,-10.556],[-11.494,-9.381],[-11.494,9.383]],"o":[[-10.32,-10.556],[-10.321,10.555],[11.258,9.383],[11.494,-9.381]],"v":[[29.32,-29.436],[-29.32,-29.436],[-29.32,30.609],[29.32,30.609]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.956862804936,0.882353001015,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,74.854],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":5,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[78.47,77.788],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.615,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.615,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.407843137255,0.188235294118,0.458823529412,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":42,"op":92,"st":0,"bm":0},{"ddd":0,"ind":14,"ty":4,"nm":"note Outlines 2","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[77,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[723.5,279,0],"to":[0,-84.223,0],"ti":[167.738,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[404,127,0],"to":[-148.762,3.5,0],"ti":[0,-84.223,0]},{"t":122,"s":[77,279,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[80,80,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[55,55,100]},{"t":122,"s":[80,80,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.888,0],[0,0],[0,1.888],[-1.888,0],[0,0],[0,-1.888]],"o":[[0,0],[-1.888,0],[0,-1.888],[0,0],[1.888,0],[0,1.888]],"v":[[18.816,6.842],[-15.395,6.842],[-18.816,3.421],[-15.395,0],[18.816,0],[22.237,3.421]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[1.888,0],[0,0],[0,1.889],[-1.888,0],[0,0],[0,-1.888]],"o":[[0,0],[-1.888,0],[0,-1.888],[0,0],[1.888,0],[0,1.889]],"v":[[18.816,20.526],[-15.395,20.526],[-18.816,17.105],[-15.395,13.684],[18.816,13.684],[22.237,17.105]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[0,-1.889],[1.888,0],[0,0],[0,1.888],[-1.888,0],[0,0]],"o":[[0,1.888],[0,0],[-1.888,0],[0,-1.889],[0,0],[1.888,0]],"v":[[5.132,-10.263],[1.711,-6.842],[-15.395,-6.842],[-18.816,-10.263],[-15.395,-13.684],[1.711,-13.684]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ind":3,"ty":"sh","ix":4,"ks":{"a":0,"k":{"i":[[5.19,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,0],[1.889,0],[0,-1.888],[0,0],[0,0],[0,-5.19],[0,0],[-5.19,0],[0,0],[0,5.189],[0,0]],"o":[[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[0,0],[0,-1.888],[-1.888,0],[0,0],[0,0],[-5.19,0],[0,0],[0,5.189],[0,0],[5.19,0],[0,0],[0,-5.19]],"v":[[23.092,-33.355],[19.671,-33.355],[19.671,-37.632],[16.25,-41.053],[12.829,-37.632],[12.829,-33.355],[3.421,-33.355],[3.421,-37.632],[0,-41.053],[-3.421,-37.632],[-3.421,-33.355],[-12.829,-33.355],[-12.829,-37.632],[-16.25,-41.053],[-19.671,-37.632],[-19.671,-33.355],[-23.092,-33.355],[-32.5,-23.947],[-32.5,31.645],[-23.092,41.053],[23.092,41.053],[32.5,31.645],[32.5,-23.947]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,1,0.933333393172,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,73.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":7,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.172549024224,0.258823543787,0.149019613862,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[75,75.001],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":0,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":69,"op":286,"st":0,"bm":0},{"ddd":0,"ind":15,"ty":4,"nm":"lampjolo Outlines 2","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[703.25,279,0],"to":[0,-84.223,0],"ti":[173.238,3,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[404,127,0],"to":[-124.262,-1,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[88.25,278.675,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"t":122,"s":[703.25,279,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[80,80,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[1,-1],[-1,-1],[0,0],[-0.641,0],[-0.491,0.49],[1,1]],"o":[[-1,-1],[-1,1],[0,0],[0.491,0.49],[0.642,0],[1,-1],[0,0]],"v":[[24.792,19.358],[21.188,19.358],[21.188,22.962],[27.509,29.283],[29.301,30.018],[31.094,29.283],[31.094,25.679]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-0.642,0],[-0.491,0.49],[1,1],[0,0],[1,-1],[-1,-1]],"o":[[0.491,0.49],[0.641,0],[1,-1],[0,0],[-1,-1],[-1,1],[0,0]],"v":[[-24.793,-23.057],[-23,-22.32],[-21.208,-23.057],[-21.208,-26.661],[-27.529,-32.982],[-31.133,-32.982],[-31.133,-29.378]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[-0.661,0],[-0.491,0.49],[0,0],[1,1],[1,-1],[0,0],[-1,-1]],"o":[[0.641,0],[0,0],[1,-1],[-1,-1],[0,0],[-1,1],[0.51,0.49]],"v":[[23,-22.302],[24.792,-23.038],[31.113,-29.359],[31.113,-32.963],[27.509,-32.963],[21.188,-26.642],[21.188,-23.038]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ind":3,"ty":"sh","ix":4,"ks":{"a":0,"k":{"i":[[0.981,-1],[0,0],[-1,-1],[-0.642,0],[-0.49,0.49],[0,0],[1,1]],"o":[[0,0],[-1,1],[0.491,0.49],[0.641,0],[0,0],[1,-1],[-0.981,-1]],"v":[[-24.793,19.358],[-31.114,25.679],[-31.114,29.283],[-29.321,30.018],[-27.529,29.283],[-21.208,22.962],[-21.208,19.358]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ind":4,"ty":"sh","ix":5,"ks":{"a":0,"k":{"i":[[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0],[0,1.416]],"o":[[0,0],[-1.396,0],[0,1.397],[0,0],[1.397,0],[0,-1.396]],"v":[[41.452,-4.396],[32.528,-4.396],[29.981,-1.849],[32.528,0.698],[41.452,0.698],[44,-1.849]],"c":true},"ix":2},"nm":"Path 5","mn":"ADBE Vector Shape - Group","hd":false},{"ind":5,"ty":"sh","ix":6,"ks":{"a":0,"k":{"i":[[0,1.416],[1.415,0],[0,0],[0,-1.415],[-1.415,0],[0,0]],"o":[[0,-1.396],[0,0],[-1.397,0],[0,1.397],[0,0],[1.415,0]],"v":[[-29.982,-1.849],[-32.529,-4.396],[-41.453,-4.396],[-44,-1.849],[-41.453,0.698],[-32.529,0.698]],"c":true},"ix":2},"nm":"Path 6","mn":"ADBE Vector Shape - Group","hd":false},{"ind":6,"ty":"sh","ix":7,"ks":{"a":0,"k":{"i":[[-1.397,0],[0,1.415],[0,0],[1.415,0],[0,-1.415],[0,0]],"o":[[1.396,0],[0,0],[0,-1.397],[-1.416,0],[0,0],[0,1.415]],"v":[[0,-31.831],[2.547,-34.378],[2.547,-43.302],[0,-45.849],[-2.548,-43.302],[-2.548,-34.378]],"c":true},"ix":2},"nm":"Path 7","mn":"ADBE Vector Shape - Group","hd":false},{"ind":7,"ty":"sh","ix":8,"ks":{"a":0,"k":{"i":[[0,1.415],[1.415,0],[0,-9],[-1.415,0],[0,1.415],[-6.17,0]],"o":[[0,-1.396],[-8.982,0],[0,1.396],[1.396,0],[0,-6.189],[1.415,0]],"v":[[2.547,-15.51],[0,-18.057],[-16.302,-1.755],[-13.755,0.792],[-11.208,-1.755],[0,-12.963]],"c":true},"ix":2},"nm":"Path 8","mn":"ADBE Vector Shape - Group","hd":false},{"ind":8,"ty":"sh","ix":9,"ks":{"a":0,"k":{"i":[[0,-12.528],[3.924,-4.057],[0.641,-4.208],[1.849,0],[0,0],[0.265,1.811],[2.982,3.075],[0.056,5.981],[-12.566,0.095]],"o":[[0,6.095],[-2.981,3.094],[-0.283,1.811],[0,0],[-1.831,0],[-0.66,-4.208],[-3.849,-4],[-0.132,-12.566],[12.547,-0.094]],"v":[[22.584,-1.831],[16.245,13.849],[10.698,25.094],[7,28.245],[-7.019,28.245],[-10.699,25.113],[-16.284,13.83],[-22.585,-1.585],[-0.151,-24.416]],"c":true},"ix":2},"nm":"Path 9","mn":"ADBE Vector Shape - Group","hd":false},{"ind":9,"ty":"sh","ix":10,"ks":{"a":0,"k":{"i":[[0,-1.434],[0,0],[2.037,-0.302],[0,0],[1.377,0],[0,0],[0.358,1.321],[0,0],[0,2.151],[0,0],[-1.434,0],[0,0]],"o":[[0,0],[0,2.132],[0,0],[-0.358,1.321],[0,0],[-1.377,0],[0,0],[-2.056,-0.32],[0,0],[0,-1.434],[0,0],[1.434,0.019]],"v":[[10.452,34.283],[10.452,36.962],[6.849,41.169],[6.188,43.603],[3.264,45.849],[-3.284,45.849],[-6.208,43.603],[-6.85,41.169],[-10.472,36.943],[-10.472,34.264],[-7.887,31.679],[7.867,31.679]],"c":true},"ix":2},"nm":"Path 10","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.972549079446,0.913725550034,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75.001,72.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":12,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.615,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.615,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.96862745285,0.647058844566,0.176470592618,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":17,"op":61,"st":0,"bm":0},{"ddd":0,"ind":16,"ty":4,"nm":"champion Outlines 3","sr":1,"ks":{"o":{"a":0,"k":80,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[404,127,0],"to":[-166.238,0,0],"ti":[0,-84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[87.887,279,0],"to":[0,84.223,0],"ti":[-166.238,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[404,432,0],"to":[166.238,0,0],"ti":[0,84.223,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":92,"s":[726.797,279,0],"to":[0,-84.223,0],"ti":[166.238,0,0]},{"t":122,"s":[404,127,0]}],"ix":2},"a":{"a":0,"k":[75,75.001,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":18,"s":[55,55,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49,"s":[80,80,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79,"s":[100,100,100]},{"t":122,"s":[55,55,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-0.019,1.478],[0,0],[0,0],[0,-2.582],[0,0],[5.802,-1.145]],"o":[[0,0],[0,0],[2.582,0],[0,0],[-0.007,6.131],[0.297,-1.393]],"v":[[21.667,-11.667],[21.667,-29.555],[26.71,-29.555],[31.391,-24.873],[31.391,-19.756],[21.184,-7.353]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,0],[-2.595,0],[0,0],[0,0],[-0.297,-1.394],[0.008,6.128]],"o":[[0,-2.594],[0,0],[0,0],[0.019,1.478],[-5.803,-1.146],[0,0]],"v":[[-31.393,-24.85],[-26.687,-29.555],[-21.666,-29.555],[-21.666,-11.667],[-21.184,-7.353],[-31.393,-19.754]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ind":2,"ty":"sh","ix":3,"ks":{"a":0,"k":{"i":[[5.166,0],[0,0],[0,0],[0.921,0],[0,0],[0,-0.92],[0,0],[0,0],[0,-5.179],[0,0],[-10.214,-0.053],[-5.905,-1.472],[3.198,-3.291],[0,0],[0,-3.797],[-0.92,0],[0,0],[0,0.921],[4.576,4.707],[0,0],[0.216,4.188],[-2.926,5.164],[-0.012,10.224],[0,0]],"o":[[0,0],[0,0],[0,-0.92],[0,0],[-0.92,0],[0,0],[0,0],[-5.18,0],[0,0],[0.011,10.222],[2.926,5.164],[-0.214,4.188],[0,0],[-4.577,4.71],[0,0.921],[0,0],[0.92,0],[0.001,-3.797],[0,0],[-3.195,-3.286],[5.905,-1.472],[10.213,-0.053],[0,0],[0,-5.167]],"v":[[27.989,-35.521],[21.667,-35.521],[21.667,-38.334],[19.999,-40],[-20.001,-40],[-21.666,-38.334],[-21.666,-35.521],[-27.964,-35.521],[-37.357,-26.128],[-37.357,-19.752],[-18.826,-1.147],[-5.04,9.349],[-9.527,25.503],[-10.424,26.423],[-18.333,38.333],[-16.667,40],[16.667,40],[18.333,38.333],[10.424,26.426],[9.527,25.506],[5.04,9.349],[18.826,-1.147],[37.357,-19.754],[37.357,-26.151]],"c":true},"ix":2},"nm":"Path 3","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":5,"mn":"ADBE Vector Group","hd":false},{"ty":"mm","mm":4,"nm":"Merge Paths 2","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0.862745157878,0.933333393172,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,76.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":7,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":0,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[77.823,79.288],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-27.614,0],[0,0],[0,27.614],[0,0],[27.614,0],[0,0],[0,-27.614],[0,0]],"o":[[0,0],[27.614,0],[0,0],[0,-27.614],[0,0],[-27.614,0],[0,0],[0,27.614]],"v":[[-25,75.001],[25,75.001],[75,25.001],[75,-25.001],[25,-75.001],[-25,-75.001],[-75,-25.001],[-75,25.001]],"c":true},"ix":2},"nm":"Path 4","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":1,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.196078434587,0.270588248968,0.376470595598,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[75,75.001],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":102,"op":428,"st":19,"bm":0}],"markers":[]} \ No newline at end of file diff --git a/src/Logo College.png b/src/Logo College.png new file mode 100644 index 0000000..bafb37b Binary files /dev/null and b/src/Logo College.png differ diff --git a/src/Robot.json b/src/Robot.json new file mode 100644 index 0000000..021a38b --- /dev/null +++ b/src/Robot.json @@ -0,0 +1 @@ +{"v":"5.7.0","fr":30,"ip":0,"op":81,"w":1080,"h":1080,"nm":"Comp 1","ddd":0,"assets":[{"id":"comp_0","layers":[{"ddd":0,"ind":1,"ty":4,"nm":"1 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[360]}],"ix":10},"p":{"a":0,"k":[916.4,505.156,0],"ix":2},"a":{"a":0,"k":[395.302,305.887,0],"ix":1},"s":{"a":0,"k":[215,215,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-0.702,-1.431],[0.445,-1.516],[0.064,-0.167],[3.248,1.25],[-1.251,3.248],[-0.077,0.157],[-1.473,0.586],[-1.489,-0.574]],"o":[[0.699,1.422],[-0.047,0.163],[-1.25,3.248],[-3.249,-1.251],[0.064,-0.167],[0.684,-1.418],[1.479,-0.59],[1.488,0.573]],"v":[[5.703,-2.785],[6.096,1.771],[5.928,2.268],[-2.23,5.891],[-5.853,-2.268],[-5.642,-2.756],[-2.297,-5.865],[2.306,-5.891]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[1.152,0.445],[0.547,-0.243],[0.215,-0.559],[0,0],[0,0],[0.585,-0.074],[0,0],[0,0],[1.129,-0.501],[0.216,-0.559],[-0.242,-0.546],[0,0],[0,0],[0.364,-0.465],[0,0],[0,0],[0.572,-0.895],[0.054,-0.138],[-0.242,-0.547],[-0.557,-0.215],[0,0],[0,0],[-0.072,-0.586],[0,0],[0,0],[-0.501,-1.129],[-0.559,-0.215],[-0.546,0.243],[0,0],[0,0],[-0.465,-0.363],[0,0],[0,0],[-1.152,-0.444],[-0.547,0.243],[-0.215,0.558],[0,0],[0,0],[-0.585,0.072],[0,0],[0,0],[-1.129,0.501],[-0.216,0.558],[0.242,0.547],[0,0],[0,0],[-0.364,0.466],[0,0],[0,0],[-0.444,1.153],[-0.025,0.145],[0,0],[0.171,0.387],[0.557,0.214],[0,0],[0,0],[0.072,0.585],[0,0],[0,0],[-0.214,0.559],[0.243,0.546],[0.558,0.215],[0.547,-0.243],[0,0],[0,0],[0.466,0.364],[0,0],[0,0]],"o":[[-0.558,-0.214],[-0.547,0.243],[0,0],[0,0],[-0.589,-0.043],[0,0],[0,0],[-0.501,-1.129],[-0.547,0.243],[-0.215,0.557],[0,0],[0,0],[-0.446,0.386],[0,0],[0,0],[-0.99,-0.381],[-0.08,0.126],[-0.215,0.559],[0.243,0.547],[0,0],[0,0],[-0.042,0.589],[0,0],[0,0],[-1.128,0.502],[0.243,0.546],[0.558,0.215],[0,0],[0,0],[0.386,0.446],[0,0],[0,0],[-0.444,1.153],[0.558,0.215],[0.547,-0.243],[0,0],[0,0],[0.589,0.043],[0,0],[0,0],[0.501,1.129],[0.547,-0.243],[0.214,-0.559],[0,0],[0,0],[0.446,-0.386],[0,0],[0,0],[1.153,0.444],[0.052,-0.135],[0,0],[0.059,-0.415],[-0.243,-0.547],[0,0],[0,0],[0.042,-0.589],[0,0],[0,0],[0.545,-0.242],[0.215,-0.56],[-0.243,-0.547],[-0.558,-0.214],[0,0],[0,0],[-0.386,-0.446],[0,0],[0,0],[0.444,-1.153]],"v":[[4.5,-11.593],[2.786,-11.549],[1.604,-10.306],[1.145,-9.11],[0.693,-9.142],[-1.077,-9.097],[-1.526,-9.042],[-2.047,-10.215],[-5.004,-11.353],[-6.185,-10.11],[-6.142,-8.397],[-5.621,-7.224],[-5.964,-6.928],[-7.185,-5.645],[-7.462,-5.288],[-8.66,-5.749],[-11.353,-4.863],[-11.555,-4.464],[-11.512,-2.75],[-10.27,-1.568],[-9.072,-1.107],[-9.105,-0.656],[-9.06,1.114],[-9.004,1.564],[-10.177,2.084],[-11.315,5.041],[-10.073,6.222],[-8.359,6.179],[-7.186,5.658],[-6.891,6.001],[-5.608,7.221],[-5.25,7.499],[-5.711,8.696],[-4.426,11.592],[-2.711,11.548],[-1.53,10.306],[-1.069,9.11],[-0.617,9.142],[1.151,9.097],[1.602,9.041],[2.122,10.214],[5.078,11.353],[6.26,10.11],[6.217,8.396],[5.695,7.223],[6.039,6.927],[7.259,5.644],[7.538,5.287],[8.734,5.748],[11.629,4.462],[11.746,4.041],[11.758,3.972],[11.586,2.748],[10.345,1.568],[9.146,1.107],[9.181,0.655],[9.135,-1.115],[9.079,-1.564],[10.253,-2.086],[11.431,-3.328],[11.389,-5.042],[10.147,-6.223],[8.434,-6.18],[7.262,-5.659],[6.965,-6.002],[5.681,-7.222],[5.326,-7.501],[5.785,-8.697]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[395.265,305.887],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":4,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0.775,-1.607],[0,0],[0.035,-0.091],[-1.781,-0.685],[-0.686,1.781],[-0.026,0.087],[1.668,0.643]],"o":[[0,0],[-0.041,0.084],[-0.686,1.781],[1.782,0.687],[0.035,-0.091],[0.503,-1.717],[-1.669,-0.641]],"v":[[-3.068,-1.533],[-3.07,-1.529],[-3.185,-1.265],[-1.198,3.208],[3.276,1.222],[3.367,0.953],[1.289,-3.253]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[395.257,305.909],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":2,"ty":4,"nm":"2 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[-360]}],"ix":10},"p":{"a":0,"k":[179.06,165.702,0],"ix":2},"a":{"a":0,"k":[244.911,154.978,0],"ix":1},"s":{"a":0,"k":[215,215,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.658,-1.791],[2.412,-0.198],[0.273,0],[0,5.332],[-5.333,0],[-0.265,-0.023],[-1.649,-1.782],[0,-2.443]],"o":[[-1.648,1.782],[-0.259,0.023],[-5.333,0],[0,-5.332],[0.274,0],[2.403,0.198],[1.658,1.792],[0,2.443]],"v":[[7.099,6.566],[0.803,9.636],[0,9.67],[-9.671,0.001],[0,-9.67],[0.813,-9.636],[7.099,-6.567],[9.67,0.001]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ind":1,"ty":"sh","ix":2,"ks":{"a":0,"k":{"i":[[0,1.892],[0.648,0.648],[0.916,0],[0,0],[0,0],[0.426,0.797],[0,0],[0,0],[1.337,1.337],[0.917,0],[0.647,-0.647],[0,0],[0,0],[0.865,0.263],[0,0],[0,0],[1.592,0.323],[0.228,0],[0.648,-0.649],[0,-0.915],[0,0],[0,0],[0.797,-0.426],[0,0],[0,0],[1.338,-1.337],[0,-0.917],[-0.648,-0.648],[0,0],[0,0],[0.263,-0.866],[0,0],[0,0],[0,-1.892],[-0.649,-0.649],[-0.916,0],[0,0],[0,0],[-0.425,-0.797],[0,0],[0,0],[-1.337,-1.338],[-0.917,0],[-0.648,0.648],[0,0],[0,0],[-0.866,-0.264],[0,0],[0,0],[-1.892,0],[-0.22,0.043],[0,0],[-0.458,0.458],[0,0.916],[0,0],[0,0],[-0.797,0.426],[0,0],[0,0],[-0.918,0],[-0.647,0.647],[0,0.917],[0.648,0.648],[0,0],[0,0],[-0.263,0.866],[0,0],[0,0]],"o":[[0,-0.916],[-0.649,-0.649],[0,0],[0,0],[-0.263,-0.866],[0,0],[0,0],[1.338,-1.338],[-0.647,-0.648],[-0.917,0],[0,0],[0,0],[-0.796,-0.426],[0,0],[0,0],[0,-1.625],[-0.225,-0.046],[-0.917,0],[-0.649,0.648],[0,0],[0,0],[-0.866,0.263],[0,0],[0,0],[-1.338,-1.337],[-0.648,0.648],[0,0.917],[0,0],[0,0],[-0.425,0.797],[0,0],[0,0],[-1.892,0],[0,0.916],[0.648,0.648],[0,0],[0,0],[0.263,0.866],[0,0],[0,0],[-1.338,1.337],[0.648,0.648],[0.917,0],[0,0],[0,0],[0.797,0.426],[0,0],[0,0],[0,1.892],[0.222,0],[0,0],[0.626,-0.144],[0.648,-0.649],[0,0],[0,0],[0.865,-0.264],[0,0],[0,0],[0.645,0.646],[0.918,0],[0.648,-0.648],[0,-0.916],[0,0],[0,0],[0.426,-0.797],[0,0],[0,0],[1.892,0]],"v":[[19.029,0.001],[18.023,-2.425],[15.597,-3.432],[13.632,-3.432],[13.43,-4.094],[12.392,-6.601],[12.065,-7.213],[13.454,-8.602],[13.455,-13.455],[11.029,-14.459],[8.603,-13.455],[7.212,-12.064],[6.6,-12.391],[4.095,-13.43],[3.431,-13.632],[3.431,-15.597],[0.683,-18.959],[0,-19.028],[-2.426,-18.023],[-3.432,-15.597],[-3.432,-13.632],[-4.095,-13.43],[-6.601,-12.391],[-7.213,-12.064],[-8.603,-13.455],[-13.456,-13.455],[-14.461,-11.028],[-13.456,-8.602],[-12.066,-7.213],[-12.393,-6.601],[-13.431,-4.094],[-13.633,-3.432],[-15.597,-3.432],[-19.029,0.001],[-18.023,2.426],[-15.597,3.432],[-13.633,3.432],[-13.431,4.094],[-12.393,6.601],[-12.066,7.213],[-13.455,8.604],[-13.456,13.455],[-11.029,14.46],[-8.603,13.455],[-7.213,12.066],[-6.601,12.393],[-4.095,13.432],[-3.432,13.632],[-3.432,15.597],[0,19.028],[0.666,18.963],[0.771,18.941],[2.426,18.023],[3.431,15.597],[3.431,13.632],[4.095,13.432],[6.6,12.393],[7.212,12.066],[8.603,13.456],[11.029,14.459],[13.455,13.455],[14.459,11.028],[13.455,8.602],[12.065,7.213],[12.392,6.601],[13.43,4.094],[13.632,3.432],[15.597,3.432]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"mm","mm":1,"nm":"Merge Paths 1","mn":"ADBE Vector Filter - Merge","hd":false},{"ty":"fl","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[244.911,154.978],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":4,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.724,0.224],[0,0],[0.15,0],[0,-2.924],[-2.924,0],[-0.137,0.013],[0,2.739]],"o":[[0,0],[-0.142,-0.013],[-2.924,0],[0,2.924],[0.15,0],[2.733,-0.224],[0,-2.739]],"v":[[0.445,-5.284],[0.44,-5.284],[0,-5.303],[-5.303,0],[0,5.303],[0.433,5.284],[5.303,0]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[244.911,154.978],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":3,"ty":4,"nm":"рука 2","parent":9,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":7,"s":[190]},{"i":{"x":[0.667],"y":[1.019]},"o":{"x":[0.333],"y":[0]},"t":28,"s":[191]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0.034]},"t":45,"s":[198.741]},{"t":79,"s":[190]}],"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[180.285,91.051,0],"to":[-0.5,2.333,0],"ti":[-0.167,0.333,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28,"s":[177.285,105.051,0],"to":[0.167,-0.333,0],"ti":[-0.667,4,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":49,"s":[181.285,89.051,0],"to":[0.667,-4,0],"ti":[0.167,-0.333,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":67,"s":[181.285,81.051,0],"to":[-0.167,0.333,0],"ti":[0.167,-1.667,0]},{"t":89,"s":[180.285,91.051,0]}],"ix":2},"a":{"a":0,"k":[-221.715,95.051,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[4.87,-6.025],[-8,-27],[-10.721,6.14],[-0.455,5.253],[-4,11],[8.822,3.516]],"o":[[-59,73],[4.497,15.177],[8.352,-4.783],[9,-104],[1.863,-5.123],[-10.121,-4.034]],"v":[[-242.5,83.5],[-273,271],[-238.265,285.283],[-229,261],[-201,97],[-210.355,75.636]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.922,0.957,0.988,0.655,0.867,0.884,0.9,1,0.812,0.812,0.812],"ix":9}},"s":{"a":0,"k":[-235.688,173.874],"ix":5},"e":{"a":0,"k":[-283.121,160.699],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":4,"ty":4,"nm":"рука 1","parent":9,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.167],"y":[0.167]},"t":3,"s":[0]},{"i":{"x":[0.665],"y":[0.832]},"o":{"x":[0.296],"y":[0]},"t":40,"s":[-11]},{"i":{"x":[0.811],"y":[1.256]},"o":{"x":[0.428],"y":[-0.7]},"t":67,"s":[3.659]},{"t":89,"s":[0]}],"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":3,"s":[-223.715,93.051,0],"to":[0,4.333,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":31,"s":[-223.715,119.051,0],"to":[0,0,0],"ti":[0,4.333,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":52,"s":[-223.715,93.051,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":70,"s":[-223.715,76.051,0],"to":[0,0,0],"ti":[0,0,0]},{"t":89,"s":[-223.715,93.051,0]}],"ix":2},"a":{"a":0,"k":[-223.715,93.051,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[4.87,-6.025],[-8,-27],[-10.721,6.14],[-0.455,5.253],[-4,11],[8.822,3.516]],"o":[[-59,73],[4.497,15.177],[8.352,-4.783],[9,-104],[1.863,-5.123],[-10.121,-4.034]],"v":[[-242.5,83.5],[-273,271],[-238.265,285.283],[-229,261],[-201,97],[-210.355,75.636]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.922,0.957,0.988,0.655,0.867,0.884,0.9,1,0.812,0.812,0.812],"ix":9}},"s":{"a":0,"k":[-271.536,175.151],"ix":5},"e":{"a":0,"k":[-227.438,178.621],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":5,"ty":4,"nm":"глаз 2","parent":7,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[120,-120.5,0],"ix":2},"a":{"a":0,"k":[-158,-120.5,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.167,0.167,0.167],"y":[0,0.167,0]},"t":36,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[1,0.833,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":41,"s":[100,0,100]},{"t":46,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[36,93],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":20,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.2901960784313726,0.5647058823529412,0.8862745098039215,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-158,-120.5],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"глаз 1","parent":7,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-158,-120.5,0],"ix":2},"a":{"a":0,"k":[-158,-120.5,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.167,0.167,0.167],"y":[0,0.167,0]},"t":36,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[1,0.833,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":41,"s":[100,0,100]},{"t":46,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[36,93],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":20,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.2901960784313726,0.5647058823529412,0.8862745098039215,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-158,-120.5],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":7,"ty":4,"nm":"экран","parent":8,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":7,"s":[-16.492,-119,0],"to":[6.794,-3.569,0],"ti":[-6.794,3.569,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.333,"y":0.333},"t":45,"s":[24.269,-140.413,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":53,"s":[24.269,-140.413,0],"to":[-6.794,3.569,0],"ti":[6.794,-3.569,0]},{"t":79,"s":[-16.492,-119,0]}],"ix":2},"a":{"a":0,"k":[-16.492,-119,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0.167},"t":7,"s":[{"i":[[0,0.5],[80.5,-54],[0,0],[-3,82.5],[43.5,1]],"o":[[-1.383,5.531],[0,0],[0,0],[1.508,-41.476],[-43.5,-1]],"v":[[9,-199.75],[-65,-40.5],[158,-40.5],[210,-121],[152.25,-199.5]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":45,"s":[{"i":[[0,0.5],[80.5,-54],[0,0],[-3,82.5],[43.5,1]],"o":[[-1.383,5.531],[0,0],[0,0],[1.508,-41.476],[-43.5,-1]],"v":[[31.083,-199.182],[-42.917,-39.932],[158,-40.5],[210,-121],[152.25,-199.5]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.333,"y":0},"t":53,"s":[{"i":[[0,0.5],[80.5,-54],[0,0],[-3,82.5],[43.5,1]],"o":[[-1.383,5.531],[0,0],[0,0],[1.508,-41.476],[-43.5,-1]],"v":[[31.083,-199.182],[-42.917,-39.932],[158,-40.5],[210,-121],[152.25,-199.5]],"c":true}]},{"t":79,"s":[{"i":[[0,0.5],[80.5,-54],[0,0],[-3,82.5],[43.5,1]],"o":[[-1.383,5.531],[0,0],[0,0],[1.508,-41.476],[-43.5,-1]],"v":[[9,-199.75],[-65,-40.5],[158,-40.5],[210,-121],[152.25,-199.5]],"c":true}]}],"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.227450980392,0.227450980392,0.227450980392,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 2","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[441,162],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":64,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.133333333333,0.133333333333,0.133333333333,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-16.5,-119],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[102.759,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":8,"ty":4,"nm":"голова","parent":9,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":7,"s":[0]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":28,"s":[-9]},{"t":79,"s":[0]}],"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":7,"s":[-19.719,9.59,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.333,"y":0.333},"t":47,"s":[-19.719,45.59,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":53,"s":[-19.719,45.59,0],"to":[0,0,0],"ti":[0,0,0]},{"t":79,"s":[-19.719,9.59,0]}],"ix":2},"a":{"a":0,"k":[-19.719,9.59,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[42.021,64.812],[78,-156],[-182,-20],[0,0],[-35.843,52.428]],"o":[[-118,-182],[-28.425,56.851],[34.319,3.771],[0,0],[26.995,-39.487]],"v":[[242,-226],[-284,-218],[-178,14],[140,16],[250.406,-40.457]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.922,0.957,0.988,0.655,0.867,0.884,0.9,1,0.812,0.812,0.812],"ix":9}},"s":{"a":0,"k":[-296,-60],"ix":5},"e":{"a":0,"k":[198,-58],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":9,"ty":4,"nm":"тело","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[519.296,715.322,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":45,"s":[519.296,635.322,0],"to":[0,0,0],"ti":[0,0,0]},{"t":90,"s":[519.296,715.322,0]}],"ix":2},"a":{"a":0,"k":[-20.704,175.322,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"d":1,"ty":"el","s":{"a":0,"k":[227,65],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"nm":"Ellipse Path 1","mn":"ADBE Vector Shape - Ellipse","hd":false},{"ty":"st","c":{"a":0,"k":[0.576470588235,0.576470588235,0.576470588235,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":1,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.819607843137,0.819607843137,0.819607843137,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-23.5,68.5],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Ellipse 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[51,0],[15.678,-82.948],[-49.731,-49.359],[-13.15,-0.292],[-37.729,38.101],[10.258,44.845]],"o":[[-12.374,0],[-8.179,43.273],[38.555,38.266],[13.544,0.301],[45.84,-46.291],[-15.181,-66.366]],"v":[[-27,31],[-179.678,102.948],[-132.269,283.359],[-25,320],[91.483,284.497],[137.742,101.155]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.922,0.957,0.988,0.655,0.867,0.884,0.9,1,0.812,0.812,0.812],"ix":9}},"s":{"a":0,"k":[-166,148],"ix":5},"e":{"a":0,"k":[86,146],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":10,"ty":4,"nm":"ухо 2","parent":8,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":7,"s":[263.5,-118,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":49,"s":[247.381,-117.593,0],"to":[0,0,0],"ti":[0,0,0]},{"t":79,"s":[263.5,-118,0]}],"ix":2},"a":{"a":0,"k":[-305.5,-118,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"d":1,"ty":"el","s":{"a":0,"k":[111,138],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"nm":"Ellipse Path 1","mn":"ADBE Vector Shape - Ellipse","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.882353001015,0.882353001015,0.882353001015,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-305.5,-118],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Ellipse 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":11,"ty":4,"nm":"ухо 1","parent":8,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":7,"s":[-305.5,-118,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":49,"s":[-321.619,-117.593,0],"to":[0,0,0],"ti":[0,0,0]},{"t":79,"s":[-305.5,-118,0]}],"ix":2},"a":{"a":0,"k":[-305.5,-118,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"d":1,"ty":"el","s":{"a":0,"k":[111,138],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"nm":"Ellipse Path 1","mn":"ADBE Vector Shape - Ellipse","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.882353001015,0.882353001015,0.882353001015,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-305.5,-118],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Ellipse 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":12,"ty":4,"nm":"3 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[547.624,439.39,0],"ix":2},"a":{"a":0,"k":[253.546,203.205,0],"ix":1},"s":{"a":0,"k":[215,215,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,-1.09],[1.09,0],[0,1.09],[-1.09,0]],"o":[[0,1.09],[-1.09,0],[0,-1.09],[1.09,0]],"v":[[1.974,0],[0,1.974],[-1.974,0],[0,-1.974]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":1.9,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[204.75,95.422],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,-1.09],[1.09,0],[0,1.09],[-1.09,0]],"o":[[0,1.09],[-1.09,0],[0,-1.09],[1.09,0]],"v":[[1.974,0],[0,1.974],[-1.974,0],[0,-1.974]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":1.9,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[395.098,161.239],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,-4.291],[4.291,0],[0,4.29],[-4.29,0]],"o":[[0,4.29],[-4.29,0],[0,-4.291],[4.291,0]],"v":[[7.769,0],[-0.001,7.768],[-7.769,0],[-0.001,-7.768]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":2.146,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[49.876,185.819],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667],"y":[1,1]},"o":{"x":[0.167,0.167],"y":[0.167,0.167]},"t":0,"s":[100,100]},{"i":{"x":[0.833,0.833],"y":[0.833,0.833]},"o":{"x":[0.333,0.333],"y":[0,0]},"t":30,"s":[128,128]},{"t":90,"s":[100,100]}],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 4","np":2,"cix":2,"bm":0,"ix":4,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[4.752,-4.752],[-4.752,4.752]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":1.9,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[67.624,269.367],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 5","np":2,"cix":2,"bm":0,"ix":5,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-4.752,-4.752],[4.752,4.752]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":1.9,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[67.432,269.367],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 6","np":2,"cix":2,"bm":0,"ix":6,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[5.366,-5.367],[-5.366,5.367]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":2.146,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[392.177,331.78],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[-360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 7","np":2,"cix":2,"bm":0,"ix":7,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-5.366,-5.367],[5.366,5.367]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":2.146,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[391.961,331.78],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[-360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 8","np":2,"cix":2,"bm":0,"ix":8,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[5.367,-5.367],[-5.367,5.367]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":2.146,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[98.548,146.609],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[-360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 9","np":2,"cix":2,"bm":0,"ix":9,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-5.367,-5.367],[5.367,5.367]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":2.146,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[98.332,146.609],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":90,"s":[-360]}],"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 10","np":2,"cix":2,"bm":0,"ix":10,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0},{"ddd":0,"ind":13,"ty":4,"nm":"тень","sr":1,"ks":{"o":{"a":0,"k":60,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[523.5,919.5,0],"ix":2},"a":{"a":0,"k":[-17.5,380.5,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":0,"s":[100,100,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":45,"s":[108,108,100]},{"t":90,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"d":1,"ty":"el","s":{"a":0,"k":[249,59],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"nm":"Ellipse Path 1","mn":"ADBE Vector Shape - Ellipse","hd":false},{"ty":"st","c":{"a":0,"k":[0,0.8,0.43529411764705883,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.76862745098,0.76862745098,0.76862745098,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-17.5,380.5],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Ellipse 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":300,"st":0,"bm":0}]}],"layers":[{"ddd":0,"ind":1,"ty":0,"nm":"Pre-comp 1","refId":"comp_0","sr":0.9,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[568,540,0],"ix":2},"a":{"a":0,"k":[540,540,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":1080,"h":1080,"ip":0,"op":81,"st":0,"bm":0}],"markers":[]} \ No newline at end of file diff --git a/src/__init__.py b/src/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/src/__pycache__/__init__.cpython-312.pyc b/src/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..847f353 Binary files /dev/null and b/src/__pycache__/__init__.cpython-312.pyc differ diff --git a/src/__pycache__/__init__.cpython-39.pyc b/src/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000..441a2cb Binary files /dev/null and b/src/__pycache__/__init__.cpython-39.pyc differ diff --git a/src/contest.json b/src/contest.json new file mode 100644 index 0000000..7fe7844 --- /dev/null +++ b/src/contest.json @@ -0,0 +1 @@ +{"v":"4.8.0","meta":{"g":"LottieFiles AE 3.4.4","a":"","k":"","d":"","tc":""},"fr":24,"ip":0,"op":96,"w":928,"h":676,"nm":"Trophy","ddd":0,"assets":[{"id":"comp_0","layers":[{"ddd":0,"ind":1,"ty":4,"nm":"FireworkLine","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[587.75,501.75,0],"ix":2},"a":{"a":0,"k":[-47.25,-0.25,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-47,-277],[-47,-12]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[1,0.648000978956,0.288679534314,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":26,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.933332974303,0.721568986481,0.305881993911,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"tm","s":{"a":1,"k":[{"i":{"x":[0.232],"y":[1]},"o":{"x":[0.727],"y":[0]},"t":5,"s":[100]},{"t":17,"s":[0]}],"ix":1},"e":{"a":1,"k":[{"i":{"x":[0.239],"y":[1]},"o":{"x":[0.75],"y":[0]},"t":3,"s":[100]},{"t":15,"s":[0]}],"ix":2},"o":{"a":0,"k":0,"ix":3},"m":1,"ix":2,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false},{"ty":"rp","c":{"a":0,"k":12,"ix":1},"o":{"a":0,"k":0,"ix":2},"m":1,"ix":3,"tr":{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[-45,36],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":30,"ix":4},"so":{"a":0,"k":100,"ix":5},"eo":{"a":0,"k":100,"ix":6},"nm":"Transform"},"nm":"Repeater 1","mn":"ADBE Vector Filter - Repeater","hd":false}],"ip":3,"op":243,"st":3,"bm":0},{"ddd":0,"ind":2,"ty":4,"nm":"FireworkLine 3","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[587.75,501.75,0],"ix":2},"a":{"a":0,"k":[-47.25,-0.25,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-47,-277],[-47,-12]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0.787748927696,0.453476041906,0.980943627451,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":26,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.933332974303,0.721568986481,0.305881993911,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"tm","s":{"a":1,"k":[{"i":{"x":[0.232],"y":[1]},"o":{"x":[0.727],"y":[0]},"t":4,"s":[100]},{"t":16,"s":[0]}],"ix":1},"e":{"a":1,"k":[{"i":{"x":[0.239],"y":[1]},"o":{"x":[0.75],"y":[0]},"t":2,"s":[100]},{"t":14,"s":[0]}],"ix":2},"o":{"a":0,"k":0,"ix":3},"m":1,"ix":2,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false},{"ty":"rp","c":{"a":0,"k":12,"ix":1},"o":{"a":0,"k":0,"ix":2},"m":1,"ix":3,"tr":{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[-45,36],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":30,"ix":4},"so":{"a":0,"k":100,"ix":5},"eo":{"a":0,"k":100,"ix":6},"nm":"Transform"},"nm":"Repeater 1","mn":"ADBE Vector Filter - Repeater","hd":false}],"ip":2,"op":242,"st":2,"bm":0},{"ddd":0,"ind":3,"ty":4,"nm":"FireworkLine 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[587.75,501.75,0],"ix":2},"a":{"a":0,"k":[-47.25,-0.25,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0]],"o":[[0,0],[0,0]],"v":[[-47,-277],[-47,-12]],"c":false},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[1,0.514047121534,0.514047121534,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":26,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.933332974303,0.721568986481,0.305881993911,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"tm","s":{"a":1,"k":[{"i":{"x":[0.232],"y":[1]},"o":{"x":[0.727],"y":[0]},"t":2,"s":[100]},{"t":14,"s":[0]}],"ix":1},"e":{"a":1,"k":[{"i":{"x":[0.239],"y":[1]},"o":{"x":[0.75],"y":[0]},"t":0,"s":[100]},{"t":12,"s":[0]}],"ix":2},"o":{"a":0,"k":0,"ix":3},"m":1,"ix":2,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false},{"ty":"rp","c":{"a":0,"k":12,"ix":1},"o":{"a":0,"k":0,"ix":2},"m":1,"ix":3,"tr":{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[-45,36],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":30,"ix":4},"so":{"a":0,"k":100,"ix":5},"eo":{"a":0,"k":100,"ix":6},"nm":"Transform"},"nm":"Repeater 1","mn":"ADBE Vector Filter - Repeater","hd":false}],"ip":0,"op":240,"st":0,"bm":0}]}],"layers":[{"ddd":0,"ind":1,"ty":4,"nm":"Trophy Outlines","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.306],"y":[1]},"o":{"x":[0.653],"y":[0]},"t":13,"s":[0]},{"t":18,"s":[100]}],"ix":11},"r":{"a":1,"k":[{"i":{"x":[0.082],"y":[1]},"o":{"x":[0.918],"y":[0]},"t":16,"s":[0]},{"i":{"x":[0.041],"y":[1]},"o":{"x":[0.959],"y":[0]},"t":18,"s":[-12]},{"i":{"x":[0.245],"y":[1]},"o":{"x":[0.755],"y":[0]},"t":20,"s":[12]},{"i":{"x":[0.286],"y":[1]},"o":{"x":[0.714],"y":[0]},"t":22,"s":[8]},{"i":{"x":[0.367],"y":[1]},"o":{"x":[0.796],"y":[0]},"t":24,"s":[-6]},{"i":{"x":[0.367],"y":[1]},"o":{"x":[0.633],"y":[0]},"t":26,"s":[6]},{"i":{"x":[0.245],"y":[1]},"o":{"x":[0.796],"y":[0]},"t":28,"s":[-4]},{"i":{"x":[0.245],"y":[1]},"o":{"x":[0.837],"y":[0]},"t":31,"s":[4]},{"i":{"x":[0.367],"y":[1]},"o":{"x":[0.796],"y":[0]},"t":34,"s":[-2]},{"i":{"x":[0.204],"y":[1]},"o":{"x":[0.878],"y":[0]},"t":37,"s":[2]},{"t":40,"s":[0]}],"ix":10},"p":{"a":1,"k":[{"i":{"x":0.306,"y":1},"o":{"x":0.653,"y":0},"t":13,"s":[458.42,-132.957,0],"to":[0,100,0],"ti":[0,-100,0]},{"t":18,"s":[458.42,467.043,0]}],"ix":2},"a":{"a":0,"k":[138.962,318.395,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[-19.005,31.94],[-19.005,22.945],[-7.637,21.544],[-7.637,-18.828],[-19.092,-18.962],[-19.092,-27.473],[7.724,-31.947],[7.724,21.55],[19.092,22.952],[19.092,31.947],[-18.999,31.947]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.564705882353,0.113725497676,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[141.377,97.344],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-26.727,0],[0,-26.727],[26.727,0],[0,26.727]],"o":[[26.727,0],[0,26.727],[-26.727,0],[0,-26.727]],"v":[[0,-48.393],[48.393,0],[0,48.393],[-48.393,0]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.972549079446,0.878431432387,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[141.374,97.33],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0.871,2.361],[0,0],[1.515,0],[0,0],[0,0],[0,0]],"o":[[0,0],[-0.525,-1.421],[0,0],[0,0],[0,0],[2.517,0]],"v":[[25.342,16.218],[12.447,-18.722],[9.054,-21.086],[-26.213,-21.086],[-10.648,21.086],[21.949,21.086]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.564705882353,0.113725497676,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[204.177,295.454],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.517,0],[0,0],[-0.872,2.361],[0,0],[-1.514,0],[0,0],[-0.524,-1.421],[0,0]],"o":[[0,0],[-2.517,0],[0,0],[0.524,-1.421],[0,0],[1.514,0],[0,0],[0.872,2.361]],"v":[[86.82,21.086],[-86.82,21.086],[-90.212,16.218],[-77.317,-18.722],[-73.925,-21.086],[73.925,-21.086],[77.317,-18.722],[90.212,16.218]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.694117647059,0.145098039216,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[139.306,295.454],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 4","np":2,"cix":2,"bm":0,"ix":4,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.475,0],[0,0],[0,0],[0,0],[0,2.476],[0,0]],"o":[[0,0],[0,0],[0,0],[2.476,0],[0,0],[0,-2.475]],"v":[[13.765,-13.771],[-18.247,-13.771],[-18.247,13.771],[13.765,13.771],[18.247,9.288],[18.247,-9.29]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.564705882353,0.113725497676,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[207.335,14.023],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 5","np":2,"cix":2,"bm":0,"ix":5,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[2.475,0],[0,0],[0,2.476],[0,0],[-2.476,0],[0,0],[0,-2.476],[0,0]],"o":[[0,0],[-2.476,0],[0,0],[0,-2.476],[0,0],[2.476,0],[0,0],[-0.001,2.476]],"v":[[82.138,13.772],[-82.138,13.772],[-86.621,9.289],[-86.621,-9.289],[-82.138,-13.772],[82.138,-13.772],[86.621,-9.289],[86.621,9.289]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.694117647059,0.145098039216,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[138.962,14.022],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 6","np":2,"cix":2,"bm":0,"ix":6,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[32.109,-23.656],[2.548,-1.19],[-12.885,9.493],[0,39.882],[0,0]],"o":[[0,0],[0,39.882],[-2.329,1.716],[14.098,6.587],[32.109,-23.655],[0,0],[0,0]],"v":[[10.953,-89.7],[10.953,-22.289],[-40.111,78.757],[-47.447,83.113],[-3.617,78.757],[47.447,-22.289],[47.447,-89.7]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.968627510819,0.737254901961,0.078431372549,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[168.161,106.964],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 7","np":2,"cix":2,"bm":0,"ix":7,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[-32.109,-23.656],[-15.214,11.208],[0,39.882],[0,0]],"o":[[0,0],[0,39.882],[15.214,11.208],[32.109,-23.655],[0,0],[0,0]],"v":[[-76.647,-89.832],[-76.647,-22.421],[-25.583,78.625],[25.583,78.625],[76.647,-22.421],[76.647,-89.832]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.996078491211,0.819607902976,0.188235309077,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[138.962,107.096],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 8","np":2,"cix":2,"bm":0,"ix":8,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[1.749,-17.738],[-19.788,-27.617],[-1.317,-1.67],[0,0]],"o":[[0,0],[0,0],[0,0],[-3.334,33.811],[1.228,1.714],[0,0],[-42.09,-53.373]],"v":[[-3.54,-65.147],[-16.647,-65.147],[-29.754,-65.147],[-30.823,-35.466],[-5.982,60.07],[-2.165,65.147],[34.158,65.147]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.968627510819,0.737254901961,0.078431372549,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[155.609,218.816],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 9","np":2,"cix":2,"bm":0,"ix":9,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[42.09,-53.373],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[-42.089,-53.374],[0,0],[0,0],[0,0.001]],"v":[[-50.805,65.148],[50.805,65.148],[13.107,-65.148],[0,-65.148],[-13.107,-65.148]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.996078491211,0.819607902976,0.188235309077,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[138.962,218.816],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 10","np":2,"cix":2,"bm":0,"ix":10,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[22.275,0],[5.042,0.817],[0.871,0.152],[-0.736,4.203],[-4.199,-0.731],[-0.794,-0.128],[-17.721,15.08],[0,23.441],[0,0],[0,0],[0,0],[0.009,4.262],[-4.268,0.009],[0,0],[0,0],[-2.132,-2.126],[0,-3.021],[0,0],[21.315,-18.138]],"o":[[-5.03,0],[-0.857,-0.139],[-4.204,-0.736],[0.736,-4.204],[0.806,0.142],[22.892,3.71],[17.858,-15.196],[0,0],[0,0],[0,0],[-4.259,0],[-0.01,-4.268],[0,0],[0,0],[3.006,0],[2.138,2.134],[0,0],[0,27.979],[-17.277,14.7]],"v":[[-35.035,66.288],[-50.163,65.069],[-52.756,64.631],[-59.034,55.687],[-50.09,49.409],[-47.69,49.814],[16.215,31.924],[44.315,-28.873],[44.315,-50.825],[-19.92,-50.684],[-19.938,-50.684],[-27.664,-58.394],[-19.954,-66.138],[48.457,-66.288],[48.487,-66.288],[56.454,-62.993],[59.77,-55],[59.77,-28.872],[26.231,43.695]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.694117647059,0.145098039216,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[217.905,105.695],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 11","np":2,"cix":2,"bm":0,"ix":11,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[5.028,0],[17.277,14.702],[0,27.979],[0,0],[-2.138,2.133],[-3.008,0],[0,0],[0,0],[0.009,-4.268],[4.258,0],[0,0],[0,0],[0,0],[-17.858,-15.197],[-22.887,3.713],[-0.807,0.141],[-0.736,-4.203],[4.203,-0.736],[0.857,-0.139]],"o":[[-22.276,0.001],[-21.314,-18.138],[0,0],[0,-3.02],[2.131,-2.125],[0,0],[0,0],[4.267,0.009],[-0.01,4.261],[0,0],[0,0],[0,0],[0,23.44],[17.721,15.08],[0.794,-0.129],[4.208,-0.729],[0.736,4.204],[-0.871,0.152],[-5.039,0.818]],"v":[[35.035,66.288],[-26.23,43.694],[-59.769,-28.873],[-59.769,-55.001],[-56.453,-62.994],[-48.484,-66.289],[-48.454,-66.289],[19.954,-66.139],[27.664,-58.395],[19.938,-50.685],[19.92,-50.685],[-44.315,-50.826],[-44.316,-28.874],[-16.216,31.923],[47.689,49.813],[50.089,49.408],[59.033,55.686],[52.755,64.63],[50.162,65.068]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,0.694117647059,0.145098039216,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[60.019,105.695],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 12","np":2,"cix":2,"bm":0,"ix":12,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":240,"st":0,"bm":0},{"ddd":0,"ind":2,"ty":4,"nm":"Top Outlines","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":6,"s":[0]},{"t":10,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":6,"s":[453.832,-104.79,0],"to":[0,100.5,0],"ti":[0,-100.5,0]},{"t":10,"s":[453.832,498.21,0]}],"ix":2},"a":{"a":0,"k":[199.655,42.468,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[54.49,2.022],[0,0],[-24.827,11.442],[0,0]],"o":[[0,0],[0,0],[0,0],[-17.864,9.591]],"v":[[-104.48,34.098],[-39.683,-24.398],[104.48,-36.12],[104.48,21.902]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.372549019608,0.658823529412,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[294.579,48.566],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,-6.736],[110.128,0],[0,6.736],[-110.128,0]],"o":[[0,6.736],[-110.128,0],[0,-6.736],[110.128,0]],"v":[[199.404,0],[0.001,12.196],[-199.404,0],[0.001,-12.196]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.741176470588,0.882353001015,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[199.655,12.446],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[-110.128,0],[0,6.736],[0,0]],"o":[[0,0],[0,6.736],[110.128,0],[0,0],[0,0]],"v":[[-199.404,-35.109],[-199.404,22.913],[0,35.109],[199.404,22.913],[199.404,-35.109]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.482352971096,0.741176470588,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[199.655,47.555],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":240,"st":0,"bm":0},{"ddd":0,"ind":3,"ty":4,"nm":"Bottom Outlines","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4,"s":[0]},{"t":8,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.429,"y":1},"o":{"x":0.765,"y":0},"t":4,"s":[453.832,-27.691,0],"to":[0,102,0],"ti":[0,-102,0]},{"t":8,"s":[453.832,584.309,0]}],"ix":2},"a":{"a":0,"k":[276.008,59.711,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[282.666,0],[0,0],[-52.797,21.817],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-106.902,-28.09],[-181.161,43.204],[181.161,27.188],[181.161,-49.005]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.372549019608,0.658823529412,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[370.604,70.168],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,-11.55],[152.297,0],[0,11.55],[-152.296,0]],"o":[[0,11.55],[-152.296,0],[0,-11.55],[152.297,0]],"v":[[275.758,0],[0,20.914],[-275.758,0],[0,-20.914]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.741176470588,0.882353001015,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[276.008,21.164],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[-152.297,0],[0,9.315],[0,0]],"o":[[0,0],[0,9.315],[152.296,0],[0,0],[0,0]],"v":[[-275.758,-46.529],[-275.758,29.663],[0,46.529],[275.758,29.663],[275.758,-46.529]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.521568627451,0.760784373564,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[276.008,67.693],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 3","np":2,"cix":2,"bm":0,"ix":3,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":240,"st":0,"bm":0},{"ddd":0,"ind":4,"ty":0,"nm":"Firework","refId":"comp_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[225,428,0],"ix":2},"a":{"a":0,"k":[609,444,0],"ix":1},"s":{"a":0,"k":[23,23,100],"ix":6}},"ao":0,"w":1218,"h":888,"ip":76,"op":316,"st":76,"bm":0},{"ddd":0,"ind":5,"ty":0,"nm":"Firework","refId":"comp_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[665,100,0],"ix":2},"a":{"a":0,"k":[609,444,0],"ix":1},"s":{"a":0,"k":[23,23,100],"ix":6}},"ao":0,"w":1218,"h":888,"ip":63,"op":303,"st":63,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"Mask Layet","td":1,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[465,244,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[71.629,0],[0,-71.629],[-71.629,0],[0,71.629]],"o":[[-71.629,0],[0,71.629],[71.629,0],[0,-71.629]],"v":[[0,-129.695],[-129.695,0],[0,129.695],[129.695,0]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":0,"k":[0.787748927696,0.453476041906,0.980943627451,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":0,"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"fl","c":{"a":0,"k":[0.933332974303,0.721568986481,0.305881993911,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[-6.914,1.148],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Ellipse 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":240,"st":0,"bm":0},{"ddd":0,"ind":7,"ty":0,"nm":"Firework","tt":2,"refId":"comp_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[477,192,0],"ix":2},"a":{"a":0,"k":[609,444,0],"ix":1},"s":{"a":0,"k":[78,78,100],"ix":6}},"ao":0,"w":1218,"h":888,"ip":39,"op":279,"st":39,"bm":0}],"markers":[]} \ No newline at end of file diff --git a/src/main.css b/src/main.css new file mode 100644 index 0000000..5db5a59 --- /dev/null +++ b/src/main.css @@ -0,0 +1,20 @@ +@import url('https://fonts.googleapis.com/css2?family=Readex+Pro:wght@300;400;500;600;700&display=swap'); + + +* {font-family: 'Readex Pro';} + + + + + +body { + background-image: linear-gradient(to right, #f06b6b, #ffdb58); + background-size: 100% 100%; + background-attachment: fixed; + } +ul {list-style-type: none;} + +hr { + margin-top: 0px; + margin-bottom: 5%; +} diff --git a/src/mcqgenerator/.env b/src/mcqgenerator/.env new file mode 100644 index 0000000..ce0ecac --- /dev/null +++ b/src/mcqgenerator/.env @@ -0,0 +1 @@ +API-KEY="AIzaSyAk-vG70jpxWB17WnpOxqDtAdagBA1a9kg" diff --git a/src/mcqgenerator/MCQGenerator.py b/src/mcqgenerator/MCQGenerator.py new file mode 100644 index 0000000..c0713fa --- /dev/null +++ b/src/mcqgenerator/MCQGenerator.py @@ -0,0 +1,54 @@ +import os +import json +import PyPDF2 +import pandas as pd +import traceback +from dotenv import load_dotenv +from src.mcqgenerator.utils import read_file, get_table_data +from src.mcqgenerator.logger import logging +import langchain_google_genai as genai +from langchain.prompts import PromptTemplate +from langchain.chains import LLMChain, SequentialChain + +load_dotenv() + +api_key=os.getenv("API-KEY") +llm = genai.ChatGoogleGenerativeAI(google_api_key=api_key, model="gemini-pro") + +template=""" +Text:{text} +You are an expert MCQ maker. Given the above text, it is your job to \ +create a quiz of {number} multiple choice questions for {subject} students in {tone} tone. +Make sure the questions are not repeated and check all the questions to be conforming the text as well. +Make sure to format your response like RESPONSE_JSON below and use it as a guide. \ +Ensure to make {number} MCQs +### RESPONSE_JSON +{response_json} + +""" + +quiz_generation_prompt = PromptTemplate( + input_variables=["text", "number", "subject", "tone", "response_json"], + template=template + ) + +quiz_chain = LLMChain(llm=llm, prompt=quiz_generation_prompt, output_key="quiz", verbose=True) + +template2=""" +You are an expert english grammarian and writer. Given a Multiple Choice Quiz for {subject} students.\ +You need to evaluate the complexity of the question and give a complete analysis of the quiz. Only use at max 50 words for complexity analysis. +if the quiz is not at per with the cognitive and analytical abilities of the students,\ +update the quiz questions which needs to be changed and change the tone such that it perfectly fits the student abilities +Quiz_MCQs: +{quiz} + +Check from an expert English Writer of the above quiz: +""" + +quiz_evaluation_prompt=PromptTemplate(input_variables=["subject", "quiz"], template=template2) + +review_chain = LLMChain(llm=llm, prompt=quiz_evaluation_prompt, output_key="review", verbose=True) + +generate_evaluate_chain = SequentialChain(chains=[quiz_chain, review_chain], input_variables=["text", "number", "subject", "tone", "response_json"], + output_variables=["quiz", "review"], verbose=True) + diff --git a/src/mcqgenerator/__init__.py b/src/mcqgenerator/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/src/mcqgenerator/__pycache__/MCQGenerator.cpython-312.pyc b/src/mcqgenerator/__pycache__/MCQGenerator.cpython-312.pyc new file mode 100644 index 0000000..86294ad Binary files /dev/null and b/src/mcqgenerator/__pycache__/MCQGenerator.cpython-312.pyc differ diff --git a/src/mcqgenerator/__pycache__/MCQGenerator.cpython-39.pyc b/src/mcqgenerator/__pycache__/MCQGenerator.cpython-39.pyc new file mode 100644 index 0000000..277b04a Binary files /dev/null and b/src/mcqgenerator/__pycache__/MCQGenerator.cpython-39.pyc differ diff --git a/src/mcqgenerator/__pycache__/__init__.cpython-312.pyc b/src/mcqgenerator/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..f9b8b78 Binary files /dev/null and b/src/mcqgenerator/__pycache__/__init__.cpython-312.pyc differ diff --git a/src/mcqgenerator/__pycache__/__init__.cpython-39.pyc b/src/mcqgenerator/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000..b4e4637 Binary files /dev/null and b/src/mcqgenerator/__pycache__/__init__.cpython-39.pyc differ diff --git a/src/mcqgenerator/__pycache__/logger.cpython-312.pyc b/src/mcqgenerator/__pycache__/logger.cpython-312.pyc new file mode 100644 index 0000000..f4d8368 Binary files /dev/null and b/src/mcqgenerator/__pycache__/logger.cpython-312.pyc differ diff --git a/src/mcqgenerator/__pycache__/logger.cpython-39.pyc b/src/mcqgenerator/__pycache__/logger.cpython-39.pyc new file mode 100644 index 0000000..4a7ae63 Binary files /dev/null and b/src/mcqgenerator/__pycache__/logger.cpython-39.pyc differ diff --git a/src/mcqgenerator/__pycache__/utils.cpython-312.pyc b/src/mcqgenerator/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000..3d6682f Binary files /dev/null and b/src/mcqgenerator/__pycache__/utils.cpython-312.pyc differ diff --git a/src/mcqgenerator/__pycache__/utils.cpython-39.pyc b/src/mcqgenerator/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000..cbba3d9 Binary files /dev/null and b/src/mcqgenerator/__pycache__/utils.cpython-39.pyc differ diff --git a/src/mcqgenerator/logger.py b/src/mcqgenerator/logger.py new file mode 100644 index 0000000..661cf3c --- /dev/null +++ b/src/mcqgenerator/logger.py @@ -0,0 +1,15 @@ +import logging +import os +from datetime import datetime + +LOG_FILE=f"{datetime.now().strftime('%m_%d_%Y_%H_%H_%S')}.log" + +log_path=os.path.join(os.getcwd(), "logs") +os.makedirs(log_path, exist_ok=True) + +LOG_FILEPATH=os.path.join(log_path, LOG_FILE) + +logging.basicConfig(level=logging.INFO, + filename=LOG_FILEPATH, + format="[%(asctime)s] %(lineno)d %(name)s - %(levelname)s - %(message)s" + ) \ No newline at end of file diff --git a/src/mcqgenerator/utils.py b/src/mcqgenerator/utils.py new file mode 100644 index 0000000..20757f5 --- /dev/null +++ b/src/mcqgenerator/utils.py @@ -0,0 +1,49 @@ +import os +import json +import PyPDF2 +import traceback + +def read_file(file): + if file.name.endswith(".pdf"): + try: + pdf_reader=PyPDF2.PdfReader(file) + text="" + for page in pdf_reader.pages: + text+=page.extract_text() + return text + + except Exception as e: + raise Exception("error reading the PDF file") + + elif file.name.endswith(".txt"): + return file.read().decode("utf-8") + + else: + raise Exception( + "unsupported file format only pdf and text file supported" + ) + +def get_table_data(quiz_str): + try: + # convert the quiz from a str to dict + quiz_dict=json.loads(quiz_str) + quiz_table_data=[] + + #iterate over the quiz dictionary and extract the required information + for key, value in quiz_dict.items(): + mcq=value["mcq"] + options=" || ".join( + [ + f"{option} -> {option_value}" for option, option_value in value["options"].items() + ] + ) + + correct=value["correct"] + quiz_table_data.append({"MCQ": mcq, "Choices": options, "Correct": correct}) + + return quiz_table_data + + except Exception as e: + traceback.print_exception(type(e), e, e.__traceback__) + return False + diff --git a/src/style.css b/src/style.css new file mode 100644 index 0000000..ae60a06 --- /dev/null +++ b/src/style.css @@ -0,0 +1,76 @@ +section[data-testid='stSidebar'] { + background-color: #111; + flex-shrink: unset !important; + +} + +@media(hover:hover) and (min-width: 600px) and (max-width: 769px){ + + header[data-testid="stHeader"] { + display:none; + } + + section[data-testid='stSidebar'] { + height: 100%; + min-width:95px !important; + width: 95px !important; + margin-left: 305px; + position: relative; + z-index: 1; + top: 0; + left: 0; + background-color: #111; + overflow-x: hidden; + transition: 0.5s ease; + padding-top: 60px; + white-space: nowrap; + } + + section[data-testid='stSidebar']:hover{ + min-width: 330px !important; + } + + button[kind="header"] { + display: none; + } + + div[data-testid="collapsedControl"]{ + display: none; + } + +} + +@media(hover: hover) and (min-width: 769px){ + + header[data-testid="stHeader"] { + display:none; + } + + section[data-testid='stSidebar'] { + height: 100%; + min-width:95px !important; + width: 95px !important; + transform:translateX(0px); + position: relative; + z-index: 1; + top: 0; + left: 0; + background-color: #111; + overflow-x: hidden; + transition: 0.5s ease; + padding-top: 60px; + white-space: nowrap; + } + + section[data-testid='stSidebar']:hover{ + min-width: 330px !important; + } + + button[kind="header"] { + display: none; + } + + div[data-testid="collapsedControl"]{ + display: none; + } +} \ No newline at end of file diff --git a/test.py b/test.py new file mode 100644 index 0000000..a04e4ad --- /dev/null +++ b/test.py @@ -0,0 +1,143 @@ +# import requests + +def get_active_days(username): + """Fetches and returns total active days for a given LeetCode username in 2024. + + Args: + username (str): The username of the LeetCode user. + + Returns: + list: A list containing two elements: + - The username (str) + - The total active days in 2024 (int) if successful, or None otherwise. + """ + + url = "https://leetcode.com/graphql" + query = """ + query userProfileCalendar($username: String!, $year: Int) { + matchedUser(username: $username) { + userCalendar(year: $year) { + totalActiveDays + } + } + } + """ + + variables = { + "username": username, + "year": 2024 + } + + try: + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + + if 'errors' in data: + print("Error:", data['errors']) + return None + + total_active_days = data['data']['matchedUser']['userCalendar']['totalActiveDays'] + return [username, total_active_days] + + except requests.exceptions.RequestException as e: + print("Error making request:", e) + return None + +def get_active_days_for_users(usernames): + """Calculates total active days for a list of LeetCode usernames in 2024. + + Args: + usernames (list): A list of LeetCode usernames. + + Returns: + list: A list of lists, where each inner list contains: + - The username (str) + - The total active days in 2024 (int) if successful, or None otherwise. + """ + + results = [] + for username in usernames: + active_days = get_active_days(username) + if active_days: + results.append(active_days) + + return results +# # Example usage +# usernames = ["sreecharan9484", "ykgupta2411", "Tauhid_Neyaz"] # Replace with your usernames +active_days_list = get_active_days_for_users(usernames) + +if active_days_list: + for username, days in active_days_list: + print(f"{username}: {days} active days in 2024") +else: + print("Error fetching active days for some users.") + + + +import requests + +def get_leetcode_contest_rating(username): + + + url = "https://leetcode.com/graphql" + query = """ + query userContestRankingInfo($username: String!) { + userContestRanking(username: $username) { + rating + } + } + """ + variables = {"username": username} + + try: + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + + if 'errors' in data: + print(f"Error for {username}:", data['errors']) + return None + + contest_ranking = data['data']['userContestRanking'] + + if contest_ranking is None: # Handle cases where user has no rating + print(f"{username} has no contest rating.") + return None + + rating = contest_ranking.get('rating') + if rating is None: + print(f"Rating data is missing for {username}") + return None + + return rating + + except requests.exceptions.RequestException as e: + print(f"Request error for {username}:", e) + return None + except (KeyError, TypeError) as e: + print(f"Data processing error for {username}:", e) + return None + + +def get_ratings_for_users(usernames): + """Retrieves contest ratings for a list of usernames. + + Args: + usernames (list): A list of LeetCode usernames. + + Returns: + dict: A dictionary where keys are usernames and values are their ratings (or None if an error occurred or no rating exists). + """ + ratings = {} + for username in usernames: + rating = get_leetcode_contest_rating(username) + ratings[username] = rating + return ratings + +usernames = ["sreecharan9484", "ykgupta2411", "Tauhid_Neyaz"] # Replace with actual usernames +user_ratings = get_ratings_for_users(usernames) + +for user, rating in user_ratings.items(): + if rating is not None: + print(f"{user}'s contest rating: {rating}") + else: + print(f"Could not retrieve contest rating for {user}") diff --git a/test2.py b/test2.py new file mode 100644 index 0000000..1bfe2fb --- /dev/null +++ b/test2.py @@ -0,0 +1,120 @@ +import firebase_admin +from firebase_admin import credentials +from firebase_admin import db +import time +import streamlit as st +from google.cloud import firestore +# Replace with your Firebase project credentials (service account key JSON file) +cred = credentials.Certificate("a.json") + +# Initialize the Firebase Admin SDK +firebase_admin.initialize_app(cred, { + 'databaseURL': "https://profile-data-dde0a-default-rtdb.firebaseio.com/" # Replace with your database URL +}) + + + +def create_user(username, password, codechef_id, leet_id, github_id, codeforces_id, college, category): + + try: + users_ref = db.reference("users") + new_user_ref = users_ref.push() + user_data = { + "username": username, + "password": password, + "codechef_id": codechef_id, + "leet_id": leet_id, + "github_id": github_id, + "codeforces_id": codeforces_id, + "college": college, + "category": category + } + new_user_ref.set(user_data) + print(f"User created with ID: {new_user_ref.key}") + return new_user_ref.key + except Exception as e: + print(f"Error creating user: {e}") + return None + +def listofuser(db): + """Retrieves all users from Firebase and returns a list of usernames.""" + try: + users_ref = db.reference("users") + users_snapshot = users_ref.get() + + if users_snapshot: + user_data = [] + for user_id, user_info in users_snapshot.items(): # Iterate through user IDs and data + user_data.append(user_info["username"]) # Append username to the list + return user_data + else: + print("No users found in the database.") + return [] # Return an empty list if no users are found + + except Exception as e: + print(f"Error retrieving users: {e}") + return [] +print(listofuser(db)) +# if __name__ == "__main__": +# #users_input = get_user_input() +# insert_users_from_input([["TUHID", "Sree@1234", "sreecharan9484", "sreecharan9484", "SreeCharan1234", "sreecharan9484","LPU","Student"]]) +# print("Finished inserting users.") + +#create_user("a","a","a","a","a","a","a","a") +def list_profiles(username): #rt for real time database + """Retrieves a user profile from the Realtime Database based on username.""" + try: + ref = db.reference('/users') + users = ref.get() + + if users: + for user_id, user_data in users.items(): + if user_data.get('username') == username: + # Convert the dictionary values to a list + profile_list = list(user_data.values()) + return profile_list # Return the list + + return None + + except Exception as e: + print(f"Error retrieving profile: {e}") + return None + +def authenticate_user(username, password): + """Authenticates a user against Firebase.""" + try: + users_ref = db.reference("users") + users_snapshot = users_ref.get() + + if users_snapshot: + for user_id, user_data in users_snapshot.items(): + if user_data.get("username") == username and user_data.get("password") == password: + print(f"User '{username}' authenticated successfully. User ID: {user_id}") + return user_data # Return the user data if authenticated + print(f"Authentication failed for user '{username}'.") + return None # Return None if authentication fails + else: + print("No users found in the database.") + return None + + except Exception as e: + print(f"Error during authentication: {e}") + return None +authenticate_user("Sree Charan" ,"Sree@1234") + + +# if __name__ == "__main__": +# usernames = get_all_users() +# if usernames: +# print("List of usernames:", usernames) +#print(list_profiles("Sree Charan")) +def listofcollege(db): + users_ref = db.reference('users') + users_data = users_ref.get() + colleges = set() + for user_id, user_data in users_data.items(): + if 'college' in user_data: + colleges.add(user_data['college']) + return list(colleges) + +print("List of Colleges:", listofcollege(db)) \ No newline at end of file diff --git a/test3.py b/test3.py new file mode 100644 index 0000000..c9653de --- /dev/null +++ b/test3.py @@ -0,0 +1,77 @@ +import streamlit as st +import firebase_admin +from firebase_admin import credentials, firestore # Import for Firestore + +# -- Firebase configuration (replace with your credentials) -- +cred = credentials.Certificate("a.json") +firebase_admin.initialize_app(cred, { + 'databaseURL': "https://profile-data-dde0a-default-rtdb.firebaseio.com/" # Replace with your database URL +}) + +# -- Firestore client initialization (for scalability) -- +db = firestore.client() # Initialize Firestore client + +def create_user(username, password, codechef_id, leet_id, github_id, codeforces_id, college, category): + """ + Creates a new user in the Firebase Realtime Database (or Firestore) and returns the user ID. + + Args: + username (str): Username for the new user. + password (str): User's password (consider hashing for security). + codechef_id (str): User's CodeChef ID (optional). + leet_id (str): User's LeetCode ID (optional). + github_id (str): User's GitHub ID (optional). + codeforces_id (str): User's Codeforces ID (optional). + college (str): User's college name (optional). + category (str): User's category (optional). + + Returns: + str: The ID of the newly created user, or None on error. + """ + + try: + # Choose either Realtime Database (commented out) or Firestore + # users_ref = db.reference("users") # Use for Realtime Database + users_collection = db.collection("users") # Use for Firestore + + # Generate a unique ID (consider UUID for better distribution) + new_user_ref = users_collection.document() # Use for Firestore + + user_data = { + "username": username, + "password": password, # Consider hashing before storing + "codechef_id": codechef_id, + "leet_id": leet_id, + "github_id": github_id, + "codeforces_id": codeforces_id, + "college": college, + "category": category + } + + # Use either set() for Realtime Database (commented out) or add() for Firestore + # new_user_ref.set(user_data) # Use for Realtime Database + new_user_ref.set(user_data) # Use for Firestore + + st.success(f"User created with ID: {new_user_ref.id}") # Use for Firestore + return new_user_ref.id # Use for Firestore + + except Exception as e: + st.error(f"Error creating user: {e}") + return None + +st.title("Create User") + +username = st.text_input("Username") +password = st.text_input("Password", type="password") +codechef_id = st.text_input("CodeChef ID (optional)") +leet_id = st.text_input("LeetCode ID (optional)") +github_id = st.text_input("GitHub ID (optional)") +codeforces_id = st.text_input("Codeforces ID (optional)") +college = st.text_input("College (optional)") +category = st.text_input("Category (optional)") + +if st.button("Create User"): + user_id = create_user(username, password, codechef_id, leet_id, github_id, codeforces_id, college, category) + + if user_id: + st.success(f"User created successfully! User ID: {user_id}") \ No newline at end of file diff --git a/user.csv b/user.csv new file mode 100644 index 0000000..0db7639 --- /dev/null +++ b/user.csv @@ -0,0 +1,4 @@ +1,1,Sree@1234,sd,gh,hg,hg +2,Sree Charan,Sree@1234,sreecharan9484,sreecharan9484,SreeCharan1234,sreecharan9484 +4,tu,listofcollege3,tle0tauhid,Tauhid_Neyaz,tleTauhid,tleTauhid +3,ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411 \ No newline at end of file diff --git a/user_data.db b/user_data.db new file mode 100644 index 0000000..f489609 Binary files /dev/null and b/user_data.db differ diff --git a/users_data.csv b/users_data.csv new file mode 100644 index 0000000..00b4e1d --- /dev/null +++ b/users_data.csv @@ -0,0 +1,5 @@ +username,password,codechef_id,leet_id,github_id,codeforces_id +Sree@1234,Sree@1234,sd,gh,hg,hg +Sree Charan,Sree@1234,sreecharan9484,sreecharan9484,SreeCharan1234,sreecharan9484 +tu,listofcollege3,tle0tauhid,Tauhid_Neyaz,tleTauhid,tleTauhid +ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411,ykgupta2411 diff --git a/util/__pycache__/codeforces.cpython-312.pyc b/util/__pycache__/codeforces.cpython-312.pyc new file mode 100644 index 0000000..fb35072 Binary files /dev/null and b/util/__pycache__/codeforces.cpython-312.pyc differ diff --git a/util/__pycache__/common.cpython-312.pyc b/util/__pycache__/common.cpython-312.pyc new file mode 100644 index 0000000..07e17a0 Binary files /dev/null and b/util/__pycache__/common.cpython-312.pyc differ diff --git a/util/__pycache__/github.cpython-312.pyc b/util/__pycache__/github.cpython-312.pyc new file mode 100644 index 0000000..0a0ae16 Binary files /dev/null and b/util/__pycache__/github.cpython-312.pyc differ diff --git a/util/__pycache__/leetcode.cpython-312.pyc b/util/__pycache__/leetcode.cpython-312.pyc new file mode 100644 index 0000000..ebdedf0 Binary files /dev/null and b/util/__pycache__/leetcode.cpython-312.pyc differ diff --git a/util/__pycache__/login.cpython-312.pyc b/util/__pycache__/login.cpython-312.pyc new file mode 100644 index 0000000..6a1118a Binary files /dev/null and b/util/__pycache__/login.cpython-312.pyc differ diff --git a/util/codechef.py b/util/codechef.py new file mode 100644 index 0000000..e69de29 diff --git a/util/codeforces.py b/util/codeforces.py new file mode 100644 index 0000000..904edd3 --- /dev/null +++ b/util/codeforces.py @@ -0,0 +1,34 @@ +import streamlit as st +import requests +import matplotlib.pyplot as plt +def get_user_data(handle): + base_api_url = "https://codeforces.com/api/" + url = f"{base_api_url}user.info?handles={handle}" + response = requests.get(url) + if response.status_code == 200: + return response.json()["result"][0] + else: + st.error(f"Error: {response.text}") + return None + +def get_contest_data(handle): + base_api_url = "https://codeforces.com/api/" + url = f"{base_api_url}user.rating?handle={handle}" + response = requests.get(url) + if response.status_code == 200: + return response.json() + else: + st.error(f"Error: {response.text}") + return None + +def get_submission_data(handle): + base_api_url = "https://codeforces.com/api/" + url = f"{base_api_url}user.status?handle={handle}" + response = requests.get(url) + if response.status_code == 200: + return response.json()["result"] + else: + st.error(f"Error: {response.text}") + return None + + diff --git a/util/common.py b/util/common.py new file mode 100644 index 0000000..2c6dde2 --- /dev/null +++ b/util/common.py @@ -0,0 +1,79 @@ + +import google.generativeai as genai +import PyPDF2 +import pdf2image +import requests +def get_leetcode_data(username): + url = "https://leetcode.com/graphql" + query = """ + query getLeetCodeData($username: String!) { + userProfile: matchedUser(username: $username) { + username + profile { + userAvatar + reputation + ranking + } + submitStats { + acSubmissionNum { + difficulty + count + } + totalSubmissionNum { + difficulty + count + } + } + } + userContestRanking(username: $username) { + attendedContestsCount + rating + globalRanking + totalParticipants + topPercentage + } + recentSubmissionList(username: $username) { + title + statusDisplay + lang + } + matchedUser(username: $username) { + languageProblemCount { + languageName + problemsSolved + } + } + recentAcSubmissionList(username: $username, limit: 15) { + id + title + titleSlug + timestamp + } + + } + + """ + variables = { + "username": username + } + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + + if 'errors' in data: + print("Error:", data['errors']) + return None + + return data['data'] +def get_gemini_response1(input,pdf_cotent,prompt): + model=genai.GenerativeModel('gemini-1.5-flash') + response=model.generate_content([input,pdf_content[0],prompt]) + return response.text +def get_gemini_response(question): + model = genai.GenerativeModel('gemini-pro') + response = model.generate_content(question) + return response.text +def load_lottieurl(url: str): + r = requests.get(url) + if r.status_code != 200: + return None + return r.json() diff --git a/util/github.py b/util/github.py new file mode 100644 index 0000000..603c79a --- /dev/null +++ b/util/github.py @@ -0,0 +1,94 @@ +import os +import shutil +import streamlit as st +import requests +import pandas as pd +import plotly.express as px +from PIL import Image +from git import Repo +from urllib.request import urlopen +from bs4 import BeautifulSoup +import json +import matplotlib.pyplot as plt +import subprocess +import sys + +def run_gitleaks(user, repo): + repo_url = f'https://github.com/{user}/{repo}.git' + output_file = f"{user}_secrets.txt" + + cmd = f"chmod +x /app/cmc/gitleaks && /app/cmc/gitleaks --repo-url={repo_url} --report={output_file}" + subprocess.run(cmd, shell=True) + + +def count_lines_of_code(repo_path, ext): + total = 0 + for path, dirs, files in os.walk(repo_path): + for name in files: + st.write(name) + if name.endswith(ext): + try: + with open(os.path.join(path, name)) as f: + total += sum(1 for line in f if line.strip() != '') + except Exception as e: + total =total + return total + +def clone_and_count_lines(user, repo, ext): + repo_url = f'https://github.com/{user}/{repo}' + + local_path = f'temp/{repo}' + Repo.clone_from(repo_url, local_path) + + lines = count_lines_of_code(local_path, ext) + + #shutil.rmtree(local_path) + # you can add this in the file code after deplyoment in the streamlit ok + + return lines + +def update_progress_file(filename, repo_name): + with open(filename, 'a') as f: + f.write(repo_name + '\n') + +def is_repo_processed(filename, repo_name): + if not os.path.exists(filename): + st.write("File not found") + return False + with open(filename, 'r') as f: + lines = f.read().splitlines() + return repo_name in lines + + + + + # For wide layout +def get_all_user_repos(user): + page = 1 + repos = [] + + while True: + response = requests.get(f'https://github.com/{user}?page={page}&tab=repositories') + + if response.status_code != 200: + break + + soup = BeautifulSoup(response.text, 'html.parser') + repo_elements = soup.find_all('a', itemprop='name codeRepository') + + if not repo_elements: # If no more repos found, stop looping + break + + page_repos = [repo.text.strip() for repo in repo_elements] + repos.extend(page_repos) + + page += 1 + + return repos + +def get_user_repos(user): + repo_names = get_all_user_repos(user) + df = pd.DataFrame(repo_names, columns=['repo_name']) + df['repo_size'] = [len(name) for name in df['repo_name']] + + return df diff --git a/util/leetcode.py b/util/leetcode.py new file mode 100644 index 0000000..3d67896 --- /dev/null +++ b/util/leetcode.py @@ -0,0 +1,339 @@ +import requests +import json + +def RQuestion(username, limit=50): + + + url = f"https://leetcode.com/graphql" + headers = { + "Content-Type": "application/json" + } + + query = """ + query recentAcSubmissions($username: String!, $limit: Int!) { + recentAcSubmissionList(username: $username, limit: $limit) { + id + title + titleSlug + timestamp + } + } + """ + + variables = { + "username": username, + "limit": limit + } + + response = requests.post(url, json={"query": query, "variables": variables}, headers=headers) + + if response.status_code == 200: + data = json.loads(response.text) + return data["data"]["recentAcSubmissionList"] + else: + return f"Error fetching data: {response.text}" + +def skills(username): + query = """ + query skillStats($username: String!) { + matchedUser(username: $username) { + tagProblemCounts { + advanced { + tagName + tagSlug + problemsSolved + } + intermediate { + tagName + tagSlug + problemsSolved + } + fundamental { + tagName + tagSlug + problemsSolved + } + } + } + } + """ + + variables = {"username": username} + + url = "https://leetcode.com/graphql" # Replace with the actual GraphQL API endpoint + headers = {"Content-Type": "application/json"} + + response = requests.post(url, json={"query": query, "variables": variables}, headers=headers) + + if response.status_code == 200: + data = json.loads(response.text) + return data['data']['matchedUser']['tagProblemCounts'] + else: + print(f"Error fetching data: {response.text}") + return None + +def get_leetcode_data1(username): + url = "https://leetcode.com/graphql" + query = """ + + query getLeetCodeData($username: String!) { + userProfile: matchedUser(username: $username) { + username + profile { + userAvatar + reputation + ranking + } + submitStats { + acSubmissionNum { + difficulty + count + } + totalSubmissionNum { + difficulty + count + } + } + } + userContestRanking(username: $username) { + attendedContestsCount + rating + globalRanking + totalParticipants + topPercentage + } + recentSubmissionList(username: $username) { + title + statusDisplay + lang + } + matchedUser(username: $username) { + languageProblemCount { + languageName + problemsSolved + } + } + + } + + + """ + variables = { + "username": username, + "year": 2024 + } + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + if 'errors' in data: + print("Error:", data['errors']) + return None + + + return data['data'] + +def let_Badges(username): + url = "https://leetcode.com/graphql" + + query=""" + query userBadges($username: String!) { + matchedUser(username: $username) { + badges { + id + name + shortName + displayName + icon + hoverText + medal { + slug + config { + iconGif + iconGifBackground + } + } + creationDate + category + } + upcomingBadges { + name + icon + progress + } + } +} + +""" + + + variables = { + "username": username, + "year": 2024 + } + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + if 'errors' in data: + print("Error:", data['errors']) + return None + + + return data['data'] + +def graph(username): + url = "https://leetcode.com/graphql" + query=""" + + +query userProfileCalendar($username: String!, $year: Int) { + matchedUser(username: $username) { + userCalendar(year: $year) { + activeYears + streak + totalActiveDays + dccBadges { + timestamp + badge { + name + icon + } + } + submissionCalendar + } + } +} + """ + + + + + variables = { + "username": username, + "year": 2024 + } + response = requests.post(url, json={'query': query, 'variables': variables}) + + data = response.json() + if 'errors' in data: + print("Error:", data['errors']) + return None + + + return data['data'] + +def get_leetcode_contest_rating(username): + + + url = "https://leetcode.com/graphql" + query = """ + query userContestRankingInfo($username: String!) { + userContestRanking(username: $username) { + rating + } + } + """ + variables = {"username": username} + + try: + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + + if 'errors' in data: + print(f"Error for {username}:", data['errors']) + return None + + contest_ranking = data['data']['userContestRanking'] + + if contest_ranking is None: # Handle cases where user has no rating + print(f"{username} has no contest rating.") + return None + + rating = contest_ranking.get('rating') + if rating is None: + print(f"Rating data is missing for {username}") + return None + + return rating + + except requests.exceptions.RequestException as e: + print(f"Request error for {username}:", e) + return None + except (KeyError, TypeError) as e: + print(f"Data processing error for {username}:", e) + return None + +def get_ratings_for_users(usernames): + """Retrieves contest ratings for a list of usernames. + + Args: + usernames (list): A list of LeetCode usernames. + + Returns: + dict: A dictionary where keys are usernames and values are their ratings (or None if an error occurred or no rating exists). + """ + ratings = {} + for username in usernames: + rating = get_leetcode_contest_rating(username) + ratings[username] = rating + return ratings + +def get_active_days(username): + """Fetches and returns total active days for a given LeetCode username in 2024. + + Args: + username (str): The username of the LeetCode user. + + Returns: + list: A list containing two elements: + - The username (str) + - The total active days in 2024 (int) if successful, or None otherwise. + """ + + url = "https://leetcode.com/graphql" + query = """ + query userProfileCalendar($username: String!, $year: Int) { + matchedUser(username: $username) { + userCalendar(year: $year) { + totalActiveDays + } + } + } + """ + + variables = { + "username": username, + "year": 2024 + } + + try: + response = requests.post(url, json={'query': query, 'variables': variables}) + data = response.json() + + if 'errors' in data: + print("Error:", data['errors']) + return None + + total_active_days = data['data']['matchedUser']['userCalendar']['totalActiveDays'] + return [username, total_active_days] + + except requests.exceptions.RequestException as e: + print("Error making request:", e) + return None + +def get_active_days_for_users(usernames): + """Calculates total active days for a list of LeetCode usernames in 2024. + + Args: + usernames (list): A list of LeetCode usernames. + + Returns: + list: A list of lists, where each inner list contains: + - The username (str) + - The total active days in 2024 (int) if successful, or None otherwise. + """ + + results = [] + for username in usernames: + active_days = get_active_days(username) + if active_days: + results.append(active_days) + + return results diff --git a/util/login.py b/util/login.py new file mode 100644 index 0000000..e819dbc --- /dev/null +++ b/util/login.py @@ -0,0 +1,127 @@ +# Function to insert data into the database +from firebase_admin import db + + +def add_user(username, password, codechef_id, leet_id, github_id, codeforces_id, college, category,db): + + try: + + users_ref = db.reference("users") + new_user_ref = users_ref.push() + user_data = { + "username": username, + "password": password, + "codechef_id": codechef_id, + "leet_id": leet_id, + "github_id": github_id, + "codeforces_id": codeforces_id, + "college": college, + "category": category + } + new_user_ref.set(user_data) + print(f"User created with ID: {new_user_ref.key}") + return new_user_ref.key + except Exception as e: + print(f"Error creating user: {e}") + return None + +# Function to authenticate a user during login +def authenticate_user(username, password): + """Authenticates a user against Firebase.""" + try: + users_ref = db.reference("users") + users_snapshot = users_ref.get() + + if users_snapshot: + for user_id, user_data in users_snapshot.items(): + if user_data.get("username") == username and user_data.get("password") == password: + print(f"User '{username}' authenticated successfully. User ID: {user_id}") + return user_data # Return the user data if authenticated + print(f"Authentication failed for user '{username}'.") + return None # Return None if authentication fails + else: + print("No users found in the database.") + return None + + except Exception as e: + print(f"Error during authentication: {e}") + return None +# Password validation function +def is_valid_password(password): + if len(password) < 8: + return "Password must be at least 8 characters long." + if not any(char.isdigit() for char in password): + return "Password must contain at least one number." + return None + + +def list_profiles(username,db): #rt for real time database + """Retrieves a user profile from the Realtime Database based on username.""" + try: + ref = db.reference('/users') + users = ref.get() + + if users: + for user_id, user_data in users.items(): + if user_data.get('username') == username: + # Convert the dictionary values to a list + profile_list = list(user_data.values()) + return profile_list # Return the list + + return None + + except Exception as e: + print(f"Error retrieving profile: {e}") + return None + +def listofcollege(db): + users_ref = db.reference('users') + users_data = users_ref.get() + colleges = set() + for user_id, user_data in users_data.items(): + if 'college' in user_data: + colleges.add(user_data['college']) + return list(colleges) + + +def totalusers(college_name,n): + try: + conn = sqlite3.connect('user_data.db') # Replace with your database name + cursor = conn.cursor() + cursor.execute("SELECT * FROM users WHERE college = ?", (college_name,)) + results = cursor.fetchall() + + college_names = [] + for college in results: + college_names.append(college[n]) + + return college_names + + except sqlite3.Error as e: + print(f"SQLite error: {e}") + return [] + + finally: + if conn: + conn.close() + + + +def listofuser(db): + """Retrieves all users from Firebase and returns a list of usernames.""" + try: + users_ref = db.reference("users") + users_snapshot = users_ref.get() + + if users_snapshot: + user_data = [] + for user_id, user_info in users_snapshot.items(): # Iterate through user IDs and data + user_data.append(user_info["username"]) # Append username to the list + return user_data + else: + print("No users found in the database.") + return [] # Return an empty list if no users are found + + except Exception as e: + print(f"Error retrieving users: {e}") + return [] # Return an empty list in case of error