-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmakeup_inference_h0.py
executable file
·348 lines (295 loc) · 11.6 KB
/
makeup_inference_h0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import argparse, os, sys, glob
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
# from imwatermark import WatermarkEncoder
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import torchvision
from ldm.util import instantiate_from_config,log_txt_as_img
from ldm.models.diffusion.ddim_test import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.data.makeup_dataset import MakeupDatasetTest
import torch.nn.functional as F
# from ldm.util import log_txt_as_img, exists, instantiate_from_config
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def get_tensor(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [torchvision.transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return torchvision.transforms.Compose(transform_list)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/makeup_results"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=500,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=2,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=256,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=256,
help="image width, in pixel space",
)
parser.add_argument(
"--n_imgs",
type=int,
default=100,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=3,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=4,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given reference image. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=1,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--config",
type=str,
default="",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
parser.add_argument(
"--source_image_path",
type=str,
help="evaluate at this precision",
default=""
)
parser.add_argument(
"--source_seg_path",
type=str,
help="evaluate at this precision",
default=""
)
parser.add_argument(
"--source_depth_path",
type=str,
help="evaluate at this precision",
default=""
)
parser.add_argument(
"--ref_image_path",
type=str,
help="evaluate at this precision",
default=""
)
parser.add_argument(
"--ref_seg_path",
type=str,
help="evaluate at this precision",
default=""
)
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
grid_path = os.path.join(outpath, "grid_"+f'scale{opt.scale}_step{opt.ddim_steps}')
os.makedirs(grid_path, exist_ok=True)
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
dataset = MakeupDatasetTest(mode='test_pair', source_image_path=opt.source_image_path, source_seg_path=opt.source_seg_path,
source_depth_path=opt.source_depth_path,
ref_image_path=opt.ref_image_path,ref_seg_path=opt.ref_seg_path,)
test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
count=0
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
for iter, batch in enumerate(test_loader):
count+=1
source_image = batch['source_image'].to(device).float()
ref_image = batch['ref_image'].to(device).float()
source_depth = batch['source_depth'].to(device).float()
source_bg= batch['source_bg'].to(device).float()
source_face_gray = batch['source_face_gray'].to(device).float()
ref_face = batch['ref_face'].to(device).float()
source_seg_onehot = batch['source_seg_onehot'].to(device).float()
ref_seg_onehot = batch['ref_seg_onehot'].to(device).float()
source_face_seg = batch['source_face_seg'].to(device).float()
# get h0
source_HF_0 = model.lap_pyr_c1.pyramid_decom(source_face_gray)[0] # h0
source_HF_0_down4 = F.pixel_unshuffle(source_HF_0, downscale_factor=4)
source_depth_down4 = F.pixel_unshuffle(source_depth, downscale_factor=4)
source_HF = torch.cat([source_HF_0_down4,source_depth_down4],dim=1)
ref_LF_64 = F.pixel_unshuffle(ref_face, downscale_factor=4)
source_face_seg_64 = F.interpolate(source_face_seg, size=(64, 64), mode='bilinear')
encoder_posterior_bg = model.encode_first_stage(source_bg)
z_bg = model.get_first_stage_encoding(encoder_posterior_bg).detach()
encoder_posterior_ref_LF = model.encode_first_stage(ref_face)
z_ref_LF = model.get_first_stage_encoding(encoder_posterior_ref_LF).detach()
test_model_kwargs = {}
test_model_kwargs['z_bg'] = z_bg.to(device)
test_model_kwargs['source_HF'] = source_HF.to(device)
test_model_kwargs['z_ref_LF'] = z_ref_LF.to(device)
test_model_kwargs['ref_LF_64'] = ref_LF_64.to(device)
test_model_kwargs['source_face_seg_64'] = source_face_seg_64.to(device)
test_model_kwargs['source_seg_onehot'] = source_seg_onehot.to(device)
test_model_kwargs['ref_seg_onehot'] = ref_seg_onehot.to(device)
uc = None
if opt.scale != 1.0:
uc = model.learnable_vector
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, intermediates = sampler.sample(S=opt.ddim_steps,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
log_every_t=1,
test_model_kwargs=test_model_kwargs)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
source_image = torch.clamp((source_image + 1.0) / 2.0, min=0.0, max=1.0)
ref_image = torch.clamp((ref_image + 1.0) / 2.0, min=0.0, max=1.0)
if not opt.skip_save:
row_0=torch.cat([source_image[0,::],ref_image[0, ::],x_samples_ddim[0, ::]],dim=2)
grid = make_grid(row_0)
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
img = Image.fromarray(grid.astype(np.uint8))
img.save(os.path.join(grid_path, 'grid_' + '%05d'%count + '_seed_'+str(opt.seed)+'.jpg'))
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
if __name__ == "__main__":
main()