forked from HaxeFoundation/haxe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtype.ml
1142 lines (1070 loc) · 32.5 KB
/
type.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Haxe Compiler
* Copyright (c)2005 Nicolas Cannasse
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warraTFnty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
open Ast
type path = string list * string
type field_kind =
| Var of var_kind
| Method of method_kind
and var_kind = {
v_read : var_access;
v_write : var_access;
}
and var_access =
| AccNormal
| AccNo (* can't be accessed outside of the class itself and its subclasses *)
| AccNever (* can't be accessed, even in subclasses *)
| AccResolve (* call resolve("field") when accessed *)
| AccCall of string (* perform a method call when accessed *)
| AccInline (* similar to Normal but inline when accessed *)
| AccRequire of string (* set when @:require(cond) fails *)
and method_kind =
| MethNormal
| MethInline
| MethDynamic
| MethMacro
type t =
| TMono of t option ref
| TEnum of tenum * tparams
| TInst of tclass * tparams
| TType of tdef * tparams
| TFun of (string * bool * t) list * t
| TAnon of tanon
| TDynamic of t
| TLazy of (unit -> t) ref
and tparams = t list
and tconstant =
| TInt of int32
| TFloat of string
| TString of string
| TBool of bool
| TNull
| TThis
| TSuper
and tfunc = {
tf_args : (string * tconstant option * t) list;
tf_type : t;
tf_expr : texpr;
}
and anon_status =
| Closed
| Opened
| Const
| Statics of tclass
| EnumStatics of tenum
and tanon = {
mutable a_fields : (string, tclass_field) PMap.t;
a_status : anon_status ref;
}
and texpr_expr =
| TConst of tconstant
| TLocal of string
| TEnumField of tenum * string
| TArray of texpr * texpr
| TBinop of Ast.binop * texpr * texpr
| TField of texpr * string
| TClosure of texpr * string
| TTypeExpr of module_type
| TParenthesis of texpr
| TObjectDecl of (string * texpr) list
| TArrayDecl of texpr list
| TCall of texpr * texpr list
| TNew of tclass * tparams * texpr list
| TUnop of Ast.unop * Ast.unop_flag * texpr
| TFunction of tfunc
| TVars of (string * t * texpr option) list
| TBlock of texpr list
| TFor of string * t * texpr * texpr
| TIf of texpr * texpr * texpr option
| TWhile of texpr * texpr * Ast.while_flag
| TSwitch of texpr * (texpr list * texpr) list * texpr option
| TMatch of texpr * (tenum * tparams) * (int list * (string option * t) list option * texpr) list * texpr option
| TTry of texpr * (string * t * texpr) list
| TReturn of texpr option
| TBreak
| TContinue
| TThrow of texpr
| TCast of texpr * module_type option
and texpr = {
eexpr : texpr_expr;
etype : t;
epos : Ast.pos;
}
and tclass_field = {
cf_name : string;
mutable cf_type : t;
cf_public : bool;
mutable cf_doc : Ast.documentation;
mutable cf_meta : metadata;
mutable cf_kind : field_kind;
cf_params : (string * t) list;
mutable cf_expr : texpr option;
}
and tclass_kind =
| KNormal
| KTypeParameter
| KExtension of tclass * tparams
| KConstant of tconstant
| KGeneric
| KGenericInstance of tclass * tparams
and metadata = (string * Ast.expr list) list
and tclass = {
mutable cl_path : path;
mutable cl_pos : Ast.pos;
mutable cl_private : bool;
mutable cl_doc : Ast.documentation;
mutable cl_meta : metadata;
mutable cl_kind : tclass_kind;
mutable cl_extern : bool;
mutable cl_interface : bool;
mutable cl_types : (string * t) list;
mutable cl_super : (tclass * tparams) option;
mutable cl_implements : (tclass * tparams) list;
mutable cl_fields : (string , tclass_field) PMap.t;
mutable cl_statics : (string, tclass_field) PMap.t;
mutable cl_ordered_statics : tclass_field list;
mutable cl_ordered_fields : tclass_field list;
mutable cl_dynamic : t option;
mutable cl_array_access : t option;
mutable cl_constructor : tclass_field option;
mutable cl_init : texpr option;
mutable cl_overrides : string list;
}
and tenum_field = {
ef_name : string;
ef_type : t;
ef_pos : Ast.pos;
ef_doc : Ast.documentation;
ef_index : int;
mutable ef_meta : metadata;
}
and tenum = {
e_path : path;
e_pos : Ast.pos;
e_doc : Ast.documentation;
e_private : bool;
mutable e_meta : metadata;
mutable e_extern : bool;
mutable e_types : (string * t) list;
mutable e_constrs : (string , tenum_field) PMap.t;
mutable e_names : string list;
}
and tdef = {
t_path : path;
t_pos : Ast.pos;
t_doc : Ast.documentation;
t_private : bool;
mutable t_meta : metadata;
mutable t_types : (string * t) list;
mutable t_type : t;
}
and module_type =
| TClassDecl of tclass
| TEnumDecl of tenum
| TTypeDecl of tdef
type module_def = {
mpath : path;
mtypes : module_type list;
}
let mk e t p = { eexpr = e; etype = t; epos = p }
let mk_block e =
match e.eexpr with
| TBlock (_ :: _) -> e
| _ -> mk (TBlock [e]) e.etype e.epos
let null t p = mk (TConst TNull) t p
let mk_mono() = TMono (ref None)
let rec t_dynamic = TDynamic t_dynamic
let tfun pl r = TFun (List.map (fun t -> "",false,t) pl,r)
let fun_args l = List.map (fun (a,c,t) -> a, c <> None, t) l
let mk_class path pos =
{
cl_path = path;
cl_pos = pos;
cl_doc = None;
cl_meta = [];
cl_private = false;
cl_kind = KNormal;
cl_extern = false;
cl_interface = false;
cl_types = [];
cl_super = None;
cl_implements = [];
cl_fields = PMap.empty;
cl_ordered_statics = [];
cl_ordered_fields = [];
cl_statics = PMap.empty;
cl_dynamic = None;
cl_array_access = None;
cl_constructor = None;
cl_init = None;
cl_overrides = [];
}
let null_class =
let c = mk_class ([],"") Ast.null_pos in
c.cl_private <- true;
c
let arg_name (name,_,_) = name
let t_private = function
| TClassDecl c -> c.cl_private
| TEnumDecl e -> e.e_private
| TTypeDecl t -> t.t_private
let t_path = function
| TClassDecl c -> c.cl_path
| TEnumDecl e -> e.e_path
| TTypeDecl t -> t.t_path
let t_pos = function
| TClassDecl c -> c.cl_pos
| TEnumDecl e -> e.e_pos
| TTypeDecl t -> t.t_pos
let print_context() = ref []
let is_closed a = !(a.a_status) <> Opened
let rec s_type ctx t =
match t with
| TMono r ->
(match !r with
| None -> Printf.sprintf "Unknown<%d>" (try List.assq t (!ctx) with Not_found -> let n = List.length !ctx in ctx := (t,n) :: !ctx; n)
| Some t -> s_type ctx t)
| TEnum (e,tl) ->
Ast.s_type_path e.e_path ^ s_type_params ctx tl
| TInst (c,tl) ->
Ast.s_type_path c.cl_path ^ s_type_params ctx tl
| TType (t,tl) ->
Ast.s_type_path t.t_path ^ s_type_params ctx tl
| TFun ([],t) ->
"Void -> " ^ s_fun ctx t false
| TFun (l,t) ->
String.concat " -> " (List.map (fun (s,b,t) ->
(if b then "?" else "") ^ (if s = "" then "" else s ^ " : ") ^ s_fun ctx t true
) l) ^ " -> " ^ s_fun ctx t false
| TAnon a ->
let fl = PMap.fold (fun f acc -> (" " ^ f.cf_name ^ " : " ^ s_type ctx f.cf_type) :: acc) a.a_fields [] in
"{" ^ (if not (is_closed a) then "+" else "") ^ String.concat "," fl ^ " }"
| TDynamic t2 ->
"Dynamic" ^ s_type_params ctx (if t == t2 then [] else [t2])
| TLazy f ->
s_type ctx (!f())
and s_fun ctx t void =
match t with
| TFun _ ->
"(" ^ s_type ctx t ^ ")"
| TEnum ({ e_path = ([],"Void") },[]) when void ->
"(" ^ s_type ctx t ^ ")"
| TMono r ->
(match !r with
| None -> s_type ctx t
| Some t -> s_fun ctx t void)
| TLazy f ->
s_fun ctx (!f()) void
| _ ->
s_type ctx t
and s_type_params ctx = function
| [] -> ""
| l -> "<" ^ String.concat ", " (List.map (s_type ctx) l) ^ ">"
let s_access = function
| AccNormal -> "default"
| AccNo -> "null"
| AccNever -> "never"
| AccResolve -> "resolve"
| AccCall m -> m
| AccInline -> "inline"
| AccRequire n -> "require " ^ n
let s_kind = function
| Var { v_read = AccNormal; v_write = AccNormal } -> "var"
| Var v -> "(" ^ s_access v.v_read ^ "," ^ s_access v.v_write ^ ")"
| Method m ->
match m with
| MethNormal -> "method"
| MethDynamic -> "dynamic method"
| MethInline -> "inline method"
| MethMacro -> "macro method"
let rec is_parent csup c =
if c == csup then
true
else match c.cl_super with
| None -> false
| Some (c,_) -> is_parent csup c
let map loop t =
match t with
| TMono r ->
(match !r with
| None -> t
| Some t -> loop t) (* erase*)
| TEnum (_,[]) | TInst (_,[]) | TType (_,[]) ->
t
| TEnum (e,tl) ->
TEnum (e, List.map loop tl)
| TInst (c,tl) ->
TInst (c, List.map loop tl)
| TType (t2,tl) ->
TType (t2,List.map loop tl)
| TFun (tl,r) ->
TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
| TAnon a ->
TAnon {
a_fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields;
a_status = a.a_status;
}
| TLazy f ->
let ft = !f() in
let ft2 = loop ft in
if ft == ft2 then t else ft2
| TDynamic t2 ->
if t == t2 then t else TDynamic (loop t2)
(* substitute parameters with other types *)
let apply_params cparams params t =
match cparams with
| [] -> t
| _ ->
let rec loop l1 l2 =
match l1, l2 with
| [] , [] -> []
| (x,TLazy f) :: l1, _ -> loop ((x,(!f)()) :: l1) l2
| (_,t1) :: l1 , t2 :: l2 -> (t1,t2) :: loop l1 l2
| _ -> assert false
in
let subst = loop cparams params in
let rec loop t =
try
List.assq t subst
with Not_found ->
match t with
| TMono r ->
(match !r with
| None -> t
| Some t -> loop t)
| TEnum (e,tl) ->
(match tl with
| [] -> t
| _ -> TEnum (e,List.map loop tl))
| TType (t2,tl) ->
(match tl with
| [] -> t
| _ -> TType (t2,List.map loop tl))
| TInst (c,tl) ->
(match tl with
| [] ->
t
| [TMono r] ->
(match !r with
| Some tt when t == tt ->
(* for dynamic *)
let pt = mk_mono() in
let t = TInst (c,[pt]) in
(match pt with TMono r -> r := Some t | _ -> assert false);
t
| _ -> TInst (c,List.map loop tl))
| _ ->
TInst (c,List.map loop tl))
| TFun (tl,r) ->
TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
| TAnon a ->
TAnon {
a_fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields;
a_status = a.a_status;
}
| TLazy f ->
let ft = !f() in
let ft2 = loop ft in
if ft == ft2 then
t
else
ft2
| TDynamic t2 ->
if t == t2 then
t
else
TDynamic (loop t2)
in
loop t
let rec follow t =
match t with
| TMono r ->
(match !r with
| Some t -> follow t
| _ -> t)
| TLazy f ->
follow (!f())
| TType (t,tl) ->
follow (apply_params t.t_types tl t.t_type)
| _ -> t
let rec link e a b =
(* tell if setting a == b will create a type-loop *)
let rec loop t =
if t == a then
true
else match t with
| TMono t -> (match !t with None -> false | Some t -> loop t)
| TEnum (_,tl) -> List.exists loop tl
| TInst (_,tl) | TType (_,tl) -> List.exists loop tl
| TFun (tl,t) -> List.exists (fun (_,_,t) -> loop t) tl || loop t
| TDynamic t2 ->
if t == t2 then
false
else
loop t2
| TLazy f ->
loop (!f())
| TAnon a ->
try
PMap.iter (fun _ f -> if loop f.cf_type then raise Exit) a.a_fields;
false
with
Exit -> true
in
(* tell is already a ~= b *)
if loop b then
(follow b) == a
else
match b with
| TDynamic _ -> true
| _ -> e := Some b; true
let monomorphs eparams t =
apply_params eparams (List.map (fun _ -> mk_mono()) eparams) t
let rec fast_eq a b =
if a == b then
true
else match a , b with
| TFun (l1,r1) , TFun (l2,r2) ->
List.for_all2 (fun (_,_,t1) (_,_,t2) -> fast_eq t1 t2) l1 l2 && fast_eq r1 r2
| TType (t1,l1), TType (t2,l2) ->
t1 == t2 && List.for_all2 fast_eq l1 l2
| TEnum (e1,l1), TEnum (e2,l2) ->
e1 == e2 && List.for_all2 fast_eq l1 l2
| TInst (c1,l1), TInst (c2,l2) ->
c1 == c2 && List.for_all2 fast_eq l1 l2
| _ , _ ->
false
(* perform unification with subtyping.
the first type is always the most down in the class hierarchy
it's also the one that is pointed by the position.
It's actually a typecheck of A :> B where some mutations can happen *)
type unify_error =
| Cannot_unify of t * t
| Invalid_field_type of string
| Has_no_field of t * string
| Has_extra_field of t * string
| Invalid_kind of string * field_kind * field_kind
| Invalid_visibility of string
| Not_matching_optional of string
| Cant_force_optional
exception Unify_error of unify_error list
let cannot_unify a b = Cannot_unify (a,b)
let invalid_field n = Invalid_field_type n
let invalid_kind n a b = Invalid_kind (n,a,b)
let invalid_visibility n = Invalid_visibility n
let has_no_field t n = Has_no_field (t,n)
let has_extra_field t n = Has_extra_field (t,n)
let error l = raise (Unify_error l)
let has_meta m ml = List.exists (fun (m2,_) -> m = m2) ml
let no_meta = []
(*
we can restrict access as soon as both are runtime-compatible
*)
let unify_access a1 a2 =
a1 = a2 || match a1, a2 with
| _, AccNo | _, AccNever -> true
| AccInline, AccNormal -> true
| _ -> false
let direct_access = function
| AccNo | AccNever | AccNormal | AccInline | AccRequire _ -> true
| AccResolve | AccCall _ -> false
let unify_kind k1 k2 =
k1 = k2 || match k1, k2 with
| Var v1, Var v2 -> unify_access v1.v_read v2.v_read && unify_access v1.v_write v2.v_write
| Var v, Method m ->
(match v.v_read, v.v_write, m with
| AccNormal, _, MethNormal -> true
| AccNormal, AccNormal, MethDynamic -> true
| _ -> false)
| Method m, Var v ->
(match m with
| MethDynamic -> direct_access v.v_read && direct_access v.v_write
| MethMacro -> false
| MethNormal | MethInline ->
match v.v_write with
| AccNo | AccNever -> true
| _ -> false)
| Method m1, Method m2 ->
match m1,m2 with
| MethInline, MethNormal
| MethDynamic, MethNormal -> true
| _ -> false
let eq_stack = ref []
type eq_kind =
| EqStrict
| EqCoreType
| EqRightDynamic
| EqBothDynamic
let rec type_eq param a b =
if a == b then
()
else match a , b with
| TLazy f , _ -> type_eq param (!f()) b
| _ , TLazy f -> type_eq param a (!f())
| TMono t , _ ->
(match !t with
| None -> if param = EqCoreType || not (link t a b) then error [cannot_unify a b]
| Some t -> type_eq param t b)
| _ , TMono t ->
(match !t with
| None -> if param = EqCoreType || not (link t b a) then error [cannot_unify a b]
| Some t -> type_eq param a t)
| TType (t1,tl1), TType (t2,tl2) when (t1 == t2 || (param = EqCoreType && t1.t_path = t2.t_path)) && List.length tl1 = List.length tl2 ->
List.iter2 (type_eq param) tl1 tl2
| TType (t,tl) , _ when param <> EqCoreType ->
type_eq param (apply_params t.t_types tl t.t_type) b
| _ , TType (t,tl) when param <> EqCoreType ->
if List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!eq_stack) then
()
else begin
eq_stack := (a,b) :: !eq_stack;
try
type_eq param a (apply_params t.t_types tl t.t_type);
eq_stack := List.tl !eq_stack;
with
Unify_error l ->
eq_stack := List.tl !eq_stack;
error (cannot_unify a b :: l)
end
| TEnum (e1,tl1) , TEnum (e2,tl2) ->
if e1 != e2 && not (param = EqCoreType && e1.e_path = e2.e_path) then error [cannot_unify a b];
List.iter2 (type_eq param) tl1 tl2
| TInst (c1,tl1) , TInst (c2,tl2) ->
if c1 != c2 && not (param = EqCoreType && c1.cl_path = c2.cl_path) then error [cannot_unify a b];
List.iter2 (type_eq param) tl1 tl2
| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
(try
type_eq param r1 r2;
List.iter2 (fun (n,o1,t1) (_,o2,t2) ->
if o1 <> o2 then error [Not_matching_optional n];
type_eq param t1 t2
) l1 l2
with
Unify_error l -> error (cannot_unify a b :: l))
| TDynamic a , TDynamic b ->
type_eq param a b
| TAnon a1, TAnon a2 ->
(try
PMap.iter (fun n f1 ->
try
let f2 = PMap.find n a2.a_fields in
if f1.cf_kind <> f2.cf_kind && (param = EqStrict || param = EqCoreType || not (unify_kind f1.cf_kind f2.cf_kind)) then error [invalid_kind n f1.cf_kind f2.cf_kind];
try
type_eq param f1.cf_type f2.cf_type
with
Unify_error l -> error (invalid_field n :: l)
with
Not_found ->
if is_closed a2 then error [has_no_field b n];
if not (link (ref None) b f1.cf_type) then error [cannot_unify a b];
a2.a_fields <- PMap.add n f1 a2.a_fields
) a1.a_fields;
PMap.iter (fun n f2 ->
if not (PMap.mem n a1.a_fields) then begin
if is_closed a1 then error [has_no_field a n];
if not (link (ref None) a f2.cf_type) then error [cannot_unify a b];
a1.a_fields <- PMap.add n f2 a1.a_fields
end;
) a2.a_fields;
with
Unify_error l -> error (cannot_unify a b :: l))
| _ , _ ->
if b == t_dynamic && (param = EqRightDynamic || param = EqBothDynamic) then
()
else if a == t_dynamic && param = EqBothDynamic then
()
else
error [cannot_unify a b]
let type_iseq a b =
try
type_eq EqStrict a b;
true
with
Unify_error _ -> false
let unify_stack = ref []
let field_type f =
match f.cf_params with
| [] -> f.cf_type
| l -> monomorphs l f.cf_type
let rec raw_class_field build_type c i =
try
let f = PMap.find i c.cl_fields in
build_type f , f
with Not_found -> try
match c.cl_super with
| None ->
raise Not_found
| Some (c,tl) ->
let t , f = raw_class_field build_type c i in
apply_params c.cl_types tl t , f
with Not_found ->
let rec loop = function
| [] ->
raise Not_found
| (c,tl) :: l ->
try
let t , f = raw_class_field build_type c i in
apply_params c.cl_types tl t, f
with
Not_found -> loop l
in
loop c.cl_implements
let class_field = raw_class_field field_type
let rec unify a b =
if a == b then
()
else match a, b with
| TLazy f , _ -> unify (!f()) b
| _ , TLazy f -> unify a (!f())
| TMono t , _ ->
(match !t with
| None -> if not (link t a b) then error [cannot_unify a b]
| Some t -> unify t b)
| _ , TMono t ->
(match !t with
| None -> if not (link t b a) then error [cannot_unify a b]
| Some t -> unify a t)
| TType (t,tl) , _ ->
if not (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!unify_stack)) then begin
try
unify_stack := (a,b) :: !unify_stack;
unify (apply_params t.t_types tl t.t_type) b;
unify_stack := List.tl !unify_stack;
with
Unify_error l ->
unify_stack := List.tl !unify_stack;
error (cannot_unify a b :: l)
end
| _ , TType (t,tl) ->
if not (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!unify_stack)) then begin
try
unify_stack := (a,b) :: !unify_stack;
unify a (apply_params t.t_types tl t.t_type);
unify_stack := List.tl !unify_stack;
with
Unify_error l ->
unify_stack := List.tl !unify_stack;
error (cannot_unify a b :: l)
end
| TEnum (ea,tl1) , TEnum (eb,tl2) ->
if ea != eb then error [cannot_unify a b];
unify_types a b tl1 tl2
| TInst (c1,tl1) , TInst (c2,tl2) ->
let rec loop c tl =
if c == c2 then begin
unify_types a b tl tl2;
true
end else (match c.cl_super with
| None -> false
| Some (cs,tls) ->
loop cs (List.map (apply_params c.cl_types tl) tls)
) || List.exists (fun (cs,tls) ->
loop cs (List.map (apply_params c.cl_types tl) tls)
) c.cl_implements
in
if not (loop c1 tl1) then error [cannot_unify a b]
| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
(try
unify r1 r2;
List.iter2 (fun (_,o1,t1) (_,o2,t2) ->
if o1 && not o2 then error [Cant_force_optional];
unify t1 t2
) l2 l1 (* contravariance *)
with
Unify_error l -> error (cannot_unify a b :: l))
| TInst (c,tl) , TAnon an ->
(try
PMap.iter (fun n f2 ->
let ft, f1 = (try class_field c n with Not_found -> error [has_no_field a n]) in
if not (unify_kind f1.cf_kind f2.cf_kind) then error [invalid_kind n f1.cf_kind f2.cf_kind];
if f2.cf_public && not f1.cf_public then error [invalid_visibility n];
try
unify_with_access (apply_params c.cl_types tl ft) f2
with
Unify_error l -> error (invalid_field n :: l)
) an.a_fields;
if !(an.a_status) = Opened then an.a_status := Closed;
with
Unify_error l -> error (cannot_unify a b :: l))
| TAnon a1, TAnon a2 ->
(try
PMap.iter (fun n f2 ->
try
let f1 = PMap.find n a1.a_fields in
if not (unify_kind f1.cf_kind f2.cf_kind) then error [invalid_kind n f1.cf_kind f2.cf_kind];
if f2.cf_public && not f1.cf_public then error [invalid_visibility n];
try
unify_with_access f1.cf_type f2;
with
Unify_error l -> error (invalid_field n :: l)
with
Not_found ->
if is_closed a1 then error [has_no_field a n];
if not (link (ref None) a f2.cf_type) then error [];
a1.a_fields <- PMap.add n f2 a1.a_fields
) a2.a_fields;
(match !(a1.a_status) with
| Const when not (PMap.is_empty a2.a_fields) ->
PMap.iter (fun n _ -> if not (PMap.mem n a2.a_fields) then error [has_extra_field a n]) a1.a_fields;
| Opened ->
a1.a_status := Closed
| _ -> ());
(match !(a2.a_status) with
| Statics _ | EnumStatics _ -> error []
| Opened -> a2.a_status := Closed
| _ -> ())
with
Unify_error l -> error (cannot_unify a b :: l))
| TAnon an, TInst ({ cl_path = [],"Class" },[pt]) ->
(match !(an.a_status) with
| Statics cl -> unify (TInst (cl,List.map snd cl.cl_types)) pt
| _ -> error [cannot_unify a b])
| TAnon an, TInst ({ cl_path = [],"Enum" },[pt]) ->
(match !(an.a_status) with
| EnumStatics e -> unify (TEnum (e,List.map snd e.e_types)) pt
| _ -> error [cannot_unify a b])
| TDynamic t , _ ->
if t == a then
()
else (match b with
| TDynamic t2 ->
if t2 != b then
(try
type_eq EqRightDynamic t t2
with
Unify_error l -> error (cannot_unify a b :: l));
| _ ->
error [cannot_unify a b])
| _ , TDynamic t ->
if t == b then
()
else (match a with
| TDynamic t2 ->
if t2 != a then
(try
type_eq EqRightDynamic t t2
with
Unify_error l -> error (cannot_unify a b :: l));
| TAnon an ->
(try
(match !(an.a_status) with
| Statics _ | EnumStatics _ -> error []
| Opened -> an.a_status := Closed
| _ -> ());
PMap.iter (fun _ f ->
try
type_eq EqStrict (field_type f) t
with Unify_error l ->
error (invalid_field f.cf_name :: l)
) an.a_fields
with Unify_error l ->
error (cannot_unify a b :: l))
| _ ->
error [cannot_unify a b])
| _ , _ ->
error [cannot_unify a b]
and unify_types a b tl1 tl2 =
try
List.iter2 (type_eq EqRightDynamic) tl1 tl2
with
Unify_error l -> error ((cannot_unify a b) :: l)
and unify_with_access t1 f2 =
match f2.cf_kind with
(* write only *)
| Var { v_read = AccNo } | Var { v_read = AccNever } -> unify f2.cf_type t1
(* read only *)
| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } -> unify t1 f2.cf_type
(* read/write *)
| _ -> type_eq EqBothDynamic t1 f2.cf_type
let iter f e =
match e.eexpr with
| TConst _
| TLocal _
| TEnumField _
| TBreak
| TContinue
| TTypeExpr _ ->
()
| TArray (e1,e2)
| TBinop (_,e1,e2)
| TFor (_,_,e1,e2)
| TWhile (e1,e2,_) ->
f e1;
f e2;
| TThrow e
| TField (e,_)
| TClosure (e,_)
| TParenthesis e
| TCast (e,_)
| TUnop (_,_,e) ->
f e
| TArrayDecl el
| TNew (_,_,el)
| TBlock el ->
List.iter f el
| TObjectDecl fl ->
List.iter (fun (_,e) -> f e) fl
| TCall (e,el) ->
f e;
List.iter f el
| TVars vl ->
List.iter (fun (_,_,e) -> match e with None -> () | Some e -> f e) vl
| TFunction fu ->
f fu.tf_expr
| TIf (e,e1,e2) ->
f e;
f e1;
(match e2 with None -> () | Some e -> f e)
| TSwitch (e,cases,def) ->
f e;
List.iter (fun (el,e2) -> List.iter f el; f e2) cases;
(match def with None -> () | Some e -> f e)
| TMatch (e,_,cases,def) ->
f e;
List.iter (fun (_,_,e) -> f e) cases;
(match def with None -> () | Some e -> f e)
| TTry (e,catches) ->
f e;
List.iter (fun (_,_,e) -> f e) catches
| TReturn eo ->
(match eo with None -> () | Some e -> f e)
let map_expr f e =
match e.eexpr with
| TConst _
| TLocal _
| TEnumField _
| TBreak
| TContinue
| TTypeExpr _ ->
e
| TArray (e1,e2) ->
{ e with eexpr = TArray (f e1,f e2) }
| TBinop (op,e1,e2) ->
{ e with eexpr = TBinop (op,f e1,f e2) }
| TFor (v,t,e1,e2) ->
{ e with eexpr = TFor (v,t,f e1,f e2) }
| TWhile (e1,e2,flag) ->
{ e with eexpr = TWhile (f e1,f e2,flag) }
| TThrow e1 ->
{ e with eexpr = TThrow (f e1) }
| TField (e1,v) ->
{ e with eexpr = TField (f e1,v) }
| TClosure (e1,v) ->
{ e with eexpr = TClosure (f e1,v) }
| TParenthesis e1 ->
{ e with eexpr = TParenthesis (f e1) }
| TUnop (op,pre,e1) ->
{ e with eexpr = TUnop (op,pre,f e1) }
| TArrayDecl el ->
{ e with eexpr = TArrayDecl (List.map f el) }
| TNew (t,pl,el) ->
{ e with eexpr = TNew (t,pl,List.map f el) }
| TBlock el ->
{ e with eexpr = TBlock (List.map f el) }
| TObjectDecl el ->
{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el) }
| TCall (e1,el) ->
{ e with eexpr = TCall (f e1, List.map f el) }
| TVars vl ->
{ e with eexpr = TVars (List.map (fun (v,t,e) -> v , t , match e with None -> None | Some e -> Some (f e)) vl) }
| TFunction fu ->
{ e with eexpr = TFunction { fu with tf_expr = f fu.tf_expr } }
| TIf (ec,e1,e2) ->
{ e with eexpr = TIf (f ec,f e1,match e2 with None -> None | Some e -> Some (f e)) }
| TSwitch (e1,cases,def) ->
{ e with eexpr = TSwitch (f e1, List.map (fun (el,e2) -> List.map f el, f e2) cases, match def with None -> None | Some e -> Some (f e)) }
| TMatch (e1,t,cases,def) ->
{ e with eexpr = TMatch (f e1, t, List.map (fun (cl,params,e) -> cl, params, f e) cases, match def with None -> None | Some e -> Some (f e)) }
| TTry (e1,catches) ->
{ e with eexpr = TTry (f e1, List.map (fun (v,t,e) -> v, t, f e) catches) }
| TReturn eo ->
{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)) }
| TCast (e1,t) ->
{ e with eexpr = TCast (f e1,t) }
let map_expr_type f ft e =
match e.eexpr with
| TConst _
| TLocal _
| TEnumField _
| TBreak
| TContinue
| TTypeExpr _ ->
{ e with etype = ft e.etype }
| TArray (e1,e2) ->
{ e with eexpr = TArray (f e1,f e2); etype = ft e.etype }
| TBinop (op,e1,e2) ->
{ e with eexpr = TBinop (op,f e1,f e2); etype = ft e.etype }
| TFor (v,t,e1,e2) ->
{ e with eexpr = TFor (v,ft t,f e1,f e2); etype = ft e.etype }
| TWhile (e1,e2,flag) ->
{ e with eexpr = TWhile (f e1,f e2,flag); etype = ft e.etype }
| TThrow e1 ->
{ e with eexpr = TThrow (f e1); etype = ft e.etype }
| TField (e1,v) ->
{ e with eexpr = TField (f e1,v); etype = ft e.etype }
| TClosure (e1,v) ->
{ e with eexpr = TClosure (f e1,v); etype = ft e.etype }
| TParenthesis e1 ->
{ e with eexpr = TParenthesis (f e1); etype = ft e.etype }
| TUnop (op,pre,e1) ->
{ e with eexpr = TUnop (op,pre,f e1); etype = ft e.etype }
| TArrayDecl el ->
{ e with eexpr = TArrayDecl (List.map f el); etype = ft e.etype }
| TNew (_,_,el) ->
let et = ft e.etype in
(* make sure that we use the class corresponding to the replaced type *)