forked from dusty-nv/jetson-reinforcement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfruit.cpp
246 lines (186 loc) · 5.9 KB
/
fruit.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
* 2D deepRL example
*/
#include "deepRL.h"
#include "fruitEnv.h"
#include "commandLine.h"
#include "rand.h"
#include "glDisplay.h"
#include "glTexture.h"
#include "cudaFont.h"
#include "cudaPlanar.h"
#include <stdlib.h>
#include <signal.h>
// Define DQN API Settings
#define DEFAULT_GAME_WIDTH 48
#define DEFAULT_GAME_HEIGHT 48
#define NUM_CHANNELS 3
#define OPTIMIZER "RMSprop"
#define LEARNING_RATE 0.01f
#define REPLAY_MEMORY 10000
#define BATCH_SIZE 32
#define GAMMA 0.9f
#define EPS_START 0.9f
#define EPS_END 0.05f
#define EPS_DECAY 200
#define USE_LSTM true
#define LSTM_SIZE 256
#define ALLOW_RANDOM true
#define DEBUG_DQN false
// Environment variables
#define RENDER_ZOOM 4
#define DEFAULT_EPISODE_MAX_FRAMES 75
#define GAME_HISTORY 20
bool gameHistory[GAME_HISTORY];
int gameHistoryIdx = 0;
int gameHistoryMax = 0;
bool quit_signal = false;
// Function to catch interupt and quit program
void sig_handler(int signo)
{
if( signo == SIGINT )
{
printf("received SIGINT\n");
quit_signal = true;
}
}
int main( int argc, char** argv )
{
printf("deepRL-fruit\n\n");
// Catch quit signal to stop game
if( signal(SIGINT, sig_handler) == SIG_ERR )
printf("\ncan't catch SIGINT\n");
// Parse command line
commandLine cmdLine(argc, argv);
const int gameWidth = cmdLine.GetInt("width", DEFAULT_GAME_WIDTH);
const int gameHeight = cmdLine.GetInt("height", DEFAULT_GAME_HEIGHT);
const int epMaxFrames = cmdLine.GetInt("episode_max_frames", DEFAULT_EPISODE_MAX_FRAMES);
// Create Fruit environment
FruitEnv* fruit = FruitEnv::Create(gameWidth, gameHeight, epMaxFrames);
if( !fruit )
{
printf("[deepRL] failed to create FruitEnv instance\n");
return 0;
}
// Create reinforcement learner agent in pyTorch
dqnAgent* agent = dqnAgent::Create(gameWidth, gameHeight, NUM_CHANNELS, NUM_ACTIONS,
OPTIMIZER, LEARNING_RATE, REPLAY_MEMORY, BATCH_SIZE,
GAMMA, EPS_START, EPS_END, EPS_DECAY,
USE_LSTM, LSTM_SIZE, ALLOW_RANDOM, DEBUG_DQN);
if( !agent )
{
printf("[deepRL] failed to create deepRL instance %ux%u %u", gameWidth, gameHeight, NUM_ACTIONS);
return 0;
}
// Allocate memory for the game input
Tensor* input_tensor = Tensor::Alloc(gameWidth, gameHeight, NUM_CHANNELS);
// Check for proper
if( !input_tensor )
{
printf("[deepRL] failed to allocate input tensor with %ux%xu elements", gameWidth, gameHeight);
return 0;
}
// Create OpenGL display
glDisplay* display = glDisplay::Create("Fruit DQN", 0.2f, 0.2f, 0.2f);
glTexture* texture = NULL;
// Continue Display Initialization
if( display != NULL )
{
texture = glTexture::Create(gameWidth, gameHeight, GL_RGBA32F_ARB/*GL_RGBA8*/, NULL);
if( !texture )
printf("[deepRL] failed to create openGL texture\n");
}
else
printf("[deepRL] failed to create openGL display\n");
// Create font object
cudaFont* font = cudaFont::Create();
// Check for font object creation
if( !font )
printf("failed to create cudaFont object\n");
// Set global variables for tracking agent progress
uint32_t episode_count = 0;
uint32_t episode_wins = 0;
float reward = 0.0f;
// Run game loop
while( !quit_signal )
{
// Render fruit environment
float* imgRGBA = fruit->Render();
// Check for proper enviroment configuration
if( !imgRGBA )
{
printf("[deepRL] failed to render FruitEnv\n");
return 0;
}
if( font != NULL )
{
/*char str[256];
sprintf(str, "%f", reward);
font->RenderOverlay((float4*)imgRGBA, (float4*)imgRGBA, gameWidth, gameHeight,
str, 0, 0, make_float4(0.0f, 0.75f, 1.0f, 255.0f));*/
}
// Draw environment to display
if( display != NULL )
{
display->UserEvents();
display->BeginRender();
if( texture != NULL )
{
void* imgGL = texture->MapCUDA();
if( imgGL != NULL )
{
cudaMemcpy(imgGL, imgRGBA, texture->GetSize(), cudaMemcpyDeviceToDevice);
CUDA(cudaDeviceSynchronize());
texture->Unmap();
}
texture->Render(50, 50, gameWidth * RENDER_ZOOM, gameHeight * RENDER_ZOOM);
}
display->EndRender();
}
// Convert from RGBA to pyTorch tensor format (CHW)
CUDA(cudaRGBAToPlanarBGR((float4*)imgRGBA, gameWidth, gameHeight,
(float*)input_tensor->gpuPtr, gameWidth, gameHeight));
// Ask the agent for their action
int action = 0;
if( !agent->NextAction(input_tensor, &action) )
printf("[deepRL] agent->NextAction() failed.\n");
if( action < 0 || action >= NUM_ACTIONS )
action = ACTION_NONE;
// Provide the agent's action to the environment
const bool end_episode = fruit->Action((AgentAction)action, &reward);
// End episode and log the outcome
if( end_episode )
{
if( reward >= fruit->GetMaxReward() )
{
gameHistory[gameHistoryIdx] = true;
episode_wins++;
}
else
gameHistory[gameHistoryIdx] = false;
gameHistoryIdx = (gameHistoryIdx + 1) % GAME_HISTORY;
episode_count++;
}
printf("action = %s reward = %+0.4f %s wins = %03u of %03u (%0.2f) ",
FruitEnv::ActionToStr((AgentAction)action),
reward, end_episode ? "EOE" : " ",
episode_wins, episode_count, float(episode_wins)/float(episode_count));
if( episode_count >= GAME_HISTORY )
{
uint32_t historyWins = 0;
for( uint32_t n=0; n < GAME_HISTORY; n++ )
{
if( gameHistory[n] )
historyWins++;
}
if( historyWins > gameHistoryMax )
gameHistoryMax = historyWins;
printf("%02u of last %u (%0.2f) (max=%0.2f)", historyWins, GAME_HISTORY, float(historyWins)/float(GAME_HISTORY), float(gameHistoryMax)/float(GAME_HISTORY));
}
printf("\n");
// Train the agent with the reward
if( !agent->NextReward(reward, end_episode) )
printf("[deepRL] agent->NextReward() failed\n");
}
return 0;
}