Skip to content

Latest commit

 

History

History
153 lines (133 loc) · 5.21 KB

README.md

File metadata and controls

153 lines (133 loc) · 5.21 KB

HDU - 6228

L - Tree - The 2017 ACM-ICPC Asia Shenyang Regional Contest

Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem.

Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty.

Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.

Input

The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases.

For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree.

The summation of n in input is smaller than or equal to 200000.

Output

For each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.

Sample

Input

3
4 2
1 2
2 3
3 4
4 2
1 2
1 3
1 4
6 3
1 2
2 3
3 4
3 5
6 2

Output

1
0
1

By SinhoMoeme

題解作者 史行·某萌

Summary | 題目大意

There are $T$ test cases.
For each test case, there is a un-rooted tree with $n$ nodes. You will color the nodes with $k$ colors. You need to give the maximum number of edges which connects to all colors of nodes.

測試資料共 $T$ 組。
對於每一組資料,有一棵 $n$ 節點無根樹,用 $k$ 種顏色上色。請給出連接所有種類顔色節點之邊的數目最大值。

AC Code | AC程式碼

#include<cstdio>
#include<cstring>
#include<vector>
using std::vector;
constexpr size_t MAX=(size_t)2e5+1;
int T,n,k,x,y,ans;
long long a[MAX];
vector<int> g[MAX];
inline void dfs(int p=0,int u=1){
	a[u]=1;
	int v;
	for(int i=0;i<g[u].size();++i){
		v=g[u][i];
		if(v==p) continue;
		dfs(u,v);
		a[u]+=a[v];
	}
	return;
}
int main(){
	scanf("%d",&T);
	while(T--){
		ans=0;
		scanf("%d%d",&n,&k);
		for(int i=1;i<=n;++i) g[i].clear();
		for(int i=1;i<n;++i){
			scanf("%d%d",&x,&y);
			g[x].push_back(y);
			g[y].push_back(x);
		}
		dfs();
		for(int i=1;i<=n;++i){
			if(a[i]>=k&&n-a[i]>=k) ++ans;
		}
		printf("%d",ans);
		putchar('\n');
	}
	return 0;
}

Explain | 題目講解

Solving this problem requires clever logical thinking. The mathematical expression " $E_1 \cap E_2 \ldots \cap E_k$ " can be interpreted as the real meaning "the maximum number of edges which connects to all colors of nodes".
Thus, solving it becomes easy. You only need a DFS to get the sizes of the subtrees. Then for each subtree, if both the size of it and its complement are greater than or equal to $k$, this node(the root of it) must be able to connect $k$ colors of nodes.

此題目需要一定的邏輯思維來解決。首先需要將數學表達「 $E_1 \cap E_2 \ldots \cap E_k$ 」轉換為題目所要表達的真實含義「連接所有種類顔色節點之邊的數目最大值」。
這時候,解出此題就非常簡單了。只需要透過DFS求出子樹的大小。然後對於每棵子樹,若子樹和它的補集大小均大於 $k$ ,則該點(子樹的根)必然可以同時連接 $k$ 種不同的節點。

Variables | 變數

constexpr size_t MAX=(size_t)2e5+1;
int T,n,k,x,y,ans;
long long a[MAX];
vector<int> g[MAX];

$MAX$, $T$, $n$, $k$, $x$ and $y$: Given in the original problem.
$ans$: The final answer.
$a$: The size of the subtree rooted at $i$.
$g$: An adjacency list representation of the tree. For each origin $u$, $g[u]$ stores all the destination $v$.

$MAX$$T$$n$$k$$x$$y$ :原題所給。
$ans$ :最終答案。
$a$ :以 $i$ 为根的子樹大小。
$g$ :樹的鄰接表。對於每一始發地 $u$$g[u]$ 存儲所有的目的地 $v$

Functions | 函式

inline void dfs(int p=0,int u=1){
	a[u]=1;
	int v;
	for(int i=0;i<g[u].size();++i){
		v=g[u][i];
		if(v==p) continue;
		dfs(u,v);
		a[u]+=a[v];
	}
	return;
}

$dfs ()$: Get sizes of the subtrees.
Recursively calculate sizes of the subtrees.
Initialize the sizes of the subtree rooted at a new node with 1. Enumerate the edges whose origin is $u$, then add the size of the subtree rooted at $u$ with the size of the subtree root at $v$.

$dfs ()$:求子樹大小。
遞迴地計算子樹大小。
把根為新結點的子樹大小初始化爲1,然後枚舉每一條始發地為 $u$ 的邊,將根為 $v$ 之子樹的大小加到根為 $u$ 之子樹的大小。

Other | 其他

The original text " $E_1 \cap E_1 \ldots \cap E_k$ " in the Output section contains a typo. It should actually be " $E_1 \cap E_2 \ldots \cap E_k$ ".
You can read the sample to aid your thinking.

Output部分中的「 $E_1 \cap E_1 \ldots \cap E_k$ 」原文如此。實際應為「 $E_1 \cap E_2 \ldots \cap E_k$ 」。
參考測試資料可以幫助理解。