-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdecisionTreeModel.py
72 lines (51 loc) · 2.08 KB
/
decisionTreeModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import f1_score
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
from sklearn.cross_validation import cross_val_predict
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
X = pd.read_csv('featureVector.csv')
y = X['word.Tag']
# removing the Tag column from X to keep it as feature only.
X.drop('word.Tag', axis=1, inplace=True)
# handelling the NaN and inf values in the dataset
X=X.astype('float32')
y=y.astype('float32')
X = np.nan_to_num(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# class_weight=[{0:1,1:1}, {0:1,1:50}, {0:1,1:18},{0:1,1:1940}, {0:1,1:70},{0:1,1:3},{0:1,1:25}] // tested on these ratios.
dtc = DecisionTreeClassifier(max_depth=32, class_weight=[{0:1, 1:1}])
gnb = GaussianNB()
clf = RandomForestClassifier(max_depth=10)
# fit
dtc.fit(X_train, y_train)
gnb.fit(X_train, y_train)
clf.fit(X_train, y_train)
# predict
y_pred = dtc.predict(X_test)
target_names = ['I-Loc', 'B-Org', 'I-Per', 'Other', 'B-Per', 'I-Org', 'B-Loc']
# print
print "Results for Decision tree.."
print(classification_report(y_test, y_pred, target_names=target_names))
# f1 score
score = f1_score(y_pred, y_test, average='weighted')
print "Decision Tree F1 score: {:.2f}".format(score)
print "Results for Naive Bayes..."
y_pred = gnb.predict(X_test)
print(classification_report(y_test, y_pred, target_names=target_names))
# f1 score
score = f1_score(y_pred, y_test, average='weighted')
print "Naive Bayes F1 score: {:.2f}".format(score)
print "Results for Random Forest..."
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred, target_names=target_names))
# f1 score
score = f1_score(y_pred, y_test, average='weighted')
print "random Forest F1 score: {:.2f}".format(score)
# # Cross validation on Data
# pred = cross_val_predict(estimator=dtc, X=X, y=y, cv=5)
# print(classification_report(pred, y, target_names))