举例说明吧。
digits = "2"
时,结果显然是res = ["a","b","c"]
;digits = "23"
时,1中res的每一个字符串后都可以接d、e、f任意一个,所以可以先将1中的res中所有元素复制两遍 变成["a","b","c","a","b","c","a","b","c"],再在此时res的每一个元素后面合适地接上d、e、f其中一个就变成了 ["ad","bd","cd","ae","be","ce","af","bf","cf"]。
由此就可以写出代码了。
时间复杂度O(n^2),空间复杂度O(1)
其实可以将此题看成求解一棵树的所有root(root可以看做是空)到叶子的路径。
例如当digits = "23"
时,树应该是这个样子:
root
/ | \
2: a b c
/|\ /|\ /|\
3: def def def
所以就可以用DFS求解这题了。
class Solution {
public:
vector<string> letterCombinations(string digits) {
int len = digits.size();
vector<string>res;
if(len == 0) return res;
const vector<string>digit2char{"","","abc","def","ghi",
"jkl","mno","pqrs","tuv","wxyz"};
res.push_back("");
for(int i = 0; i < len; i++){
int digit = int(digits[i] - '0');
int curr_res_size = res.size();
for(int k = 0; k < digit2char[digit].size() - 1; k++) // 将res中所有元素复制几遍
for(int j = 0; j < curr_res_size; j++)
res.push_back(res[j]);
for(int k = 0; k < digit2char[digit].size(); k++)
for(int j = 0; j < curr_res_size; j++)
res[k * curr_res_size + j] += digit2char[digit][k];
}
return res;
}
};
class Solution {
private:
const vector<string>digit2char{"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
void DFS(const string &digits, string out, vector<string> &res){
int start = out.size();
if(start == digits.size()){
res.push_back(out);
return;
}
for(char c: digit2char[digits[start]-'0'])
DFS(digits, out+c, res);
}
public:
vector<string> letterCombinations(string digits) {
vector<string>res;
if(digits.size() == 0) return res;
string out;
DFS(digits, out, res);
return res;
}
};