求最大连续子数组的积. 和之前的求最大连续子数组的和比较类似, 只是略微复杂一些, 因为遇到0会使整个乘积为0,而遇到负数,则会使最大乘积变成最小乘积.
采用动态规划的方法, 由于前面提到若遇到负数, 那么最小乘积会变成最大乘积, 所以我们不仅要记录最大乘积还要记录最小乘积.
我们开辟两个数组dp1和dp2, dp1[i]表示以nums[i]结尾的连续子数组的积的最大值, dp2[i]表示以nums[i]结尾的连续子数组的积的最小值. 那么不管nums[i]是正是负或者是0, 数组的更新方式均为:
dp1[i] = max(nums[i], dp1[i-1]*nums[i], dp2[i-1]*nums[i])
;dp2[i] = min(nums[i], dp1[i-1]*nums[i], dp2[i-1]*nums[i])
;
我们在更新两个数组的过程中用res记录最大的乘积(res = max(res, dp1[i])
), 最后返回res即可.
时空复杂度均为O(n).
仔细分析思路一的过程我们可以发现每次计算dp1[i]时只用到了dp1[i-1]和dp2[i-1], 那么我们其实没必要开辟数组, 直接用变量dp1和dp2就行了. 这样空间复杂度就减小为O(1).
这是常规减小动归空间复杂度的思路.
class Solution {
public:
int maxProduct(vector<int>& nums) {
vector<int>dp1(nums.size(), 0);
vector<int>dp2(nums.size(), 0);
dp1[0] = nums[0]; dp2[0] = nums[0];
int res = nums[0];
for(int i = 1; i < nums.size(); i++){
dp1[i] = max(dp1[i-1]*nums[i], max(dp2[i-1]*nums[i], nums[i]));
dp2[i] = min(dp1[i-1]*nums[i], min(dp2[i-1]*nums[i], nums[i]));
res = max(res, dp1[i]);
}
return res;
}
};
class Solution {
public:
int maxProduct(vector<int>& nums) {
int dp1 = nums[0], dp2 = nums[0], tmp1, tmp2;
int res = nums[0];
for(int i = 1; i < nums.size(); i++){
tmp1 = dp1*nums[i]; tmp2 = dp2*nums[i];
dp1 = max(tmp1, max(tmp2, nums[i]));
dp2 = min(tmp1, min(tmp2, nums[i]));
res = max(res, dp1);
}
return res;
}
};