Similar to the case study on whole genome sequencing data, in this study we describe applying DeepVariant to a real exome sample using a single machine.
Docker will be used to run DeepVariant and hap.py,
We will be using GRCh38 for this case study.
mkdir -p reference
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai
We will benchmark our variant calls against v4.2 of the Genome in a Bottle small variant benchmarks for HG003.
mkdir -p benchmark
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov//giab/ftp/data/AshkenazimTrio/analysis/NIST_v4.2_SmallVariantDraftBenchmark_07092020
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.bed > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz.tbi
mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata
curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam > input/HG003.novaseq.wes_idt.100x.dedup.bam
curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam.bai > input/HG003.novaseq.wes_idt.100x.dedup.bam.bai
In this case study we'll use idt_capture_novogene.grch38.bed
as the capture
target BED file. For evaluation, hap.py
will intersect this BED with the GIAB
confident regions.
HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata
curl ${HTTPDIR}/idt_capture_novogene.grch38.bed > input/idt_capture_novogene.grch38.bed
mkdir -p output
mkdir -p output/intermediate_results_dir
BIN_VERSION="1.1.0"
sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
google/deepvariant:"${BIN_VERSION}" \
/opt/deepvariant/bin/run_deepvariant \
--model_type WES \
--ref /reference/GRCh38_no_alt_analysis_set.fasta \
--reads /input/HG003.novaseq.wes_idt.100x.dedup.bam \
--regions /input/idt_capture_novogene.grch38.bed \
--output_vcf /output/HG003.output.vcf.gz \
--output_gvcf /output/HG003.output.g.vcf.gz \
--num_shards $(nproc) \
--intermediate_results_dir /output/intermediate_results_dir
By specifying --model_type WES
, you'll be using a model that is best suited
for Illumina Whole Exome Sequencing data.
--intermediate_results_dir
flag is optional. By specifying it, the
intermediate outputs of make_examples
and call_variants
stages can be found
in the directory. After the command, you can find these files in the directory:
call_variants_output.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples.tfrecord-?????-of-?????.gz
For running on GPU machines, or using Singularity instead of Docker, see Quick Start.
mkdir -p happy
sudo docker pull pkrusche/hap.py
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
pkrusche/hap.py /opt/hap.py/bin/hap.py \
/benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz \
/output/HG003.output.vcf.gz \
-f /benchmark/HG003_GRCh38_1_22_v4.2_benchmark.bed \
-T /input/idt_capture_novogene.grch38.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/happy.output \
--engine=vcfeval
Output:
Benchmarking Summary:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 1053 1026 27 1519 23 450 10 0.974359 0.978485 0.296248 0.976417 NaN NaN 1.752717 1.906796
INDEL PASS 1053 1026 27 1519 23 450 10 0.974359 0.978485 0.296248 0.976417 NaN NaN 1.752717 1.906796
SNP ALL 25324 25007 317 27947 167 2771 33 0.987482 0.993367 0.099152 0.990416 2.856273 2.759919 1.625246 1.665680
SNP PASS 25324 25007 317 27947 167 2771 33 0.987482 0.993367 0.099152 0.990416 2.856273 2.759919 1.625246 1.665680